Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Using a lipophilic 1,1'-Dioctadecy-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) staining technique, Ambystoma mexicanum can undergo vascular perfusion to allow for easy visualization of the vasculature.
Perfusion techniques have been used for centuries to visualize the circulation of tissues. Axolotl (Ambystoma mexicanum) is a species of salamander that has emerged as an essential model for regeneration studies. Little is known about how revascularization occurs in the context of regeneration in these animals. Here we report a simple method for visualization of the vasculature in axolotl via perfusion of 1,1’-Dioctadecy-3,3,3’,3’-tetramethylindocarbocyanine perchlorate (DiI). DiI is a lipophilic carbocyanine dye that inserts into the plasma membrane of endothelial cells instantaneously. Perfusion is done using a peristaltic pump such that DiI enters the circulation through the aorta. During perfusion, dye flows through the axolotl’s blood vessels and incorporates into the lipid bilayer of vascular endothelial cells upon contact. The perfusion procedure takes approximately one hour for an eight-inch axolotl. Immediately after perfusion with DiI, the axolotl can be visualized with a confocal fluorescent microscope. The DiI emits light in the red-orange range when excited with a green fluorescent filter. This DiI perfusion procedure can be used to visualize the vascular structure of axolotls or to demonstrate patterns of revascularization in regenerating tissues.
Visualization of vasculature plays a vital role in understanding the structure and function of organisms across many species. Starting in the 16th century with Leonardo da Vinci, models and graphic representations of the circulation have been studied1. Using waxes and rubber molds, tissues were perfused to create three-dimensional models of the vasculature, which allowed for the study of organogenesis and pathogenesis1,2. Resins and waxes were colored with dyes such as India Ink or carmine red to allow for their easy visualization1,2. However, these techniques caused many issues because their high viscosities prevented full perfusion of the tissue of interest1. As the field became more sophisticated, the use of confocal and electron microscopes came into play, moving the perfusion techniques away from cast-molds and toward liquid perfusions of the vasculature, some of which allowed for the perfusion and imaging of blood vessels without destroying the initial tissue3. DiI, a fluorescent carbocyanine dye, is one such stain that allows for the perfusion of animals without damage to the vascular tissue.
Carbocyanine dyes are lipophilic dyes that incorporate into cell membranes upon contact. These dyes allow for easy and instantaneous staining of vascular endothelial cells, which can then be viewed under a fluorescent confocal microscope. DiI moves via lateral diffusion in the lipid membrane of cells, as shown in the labeling and tracing of neurons4. Chemically, the two alkyl chains of DiI give the dye its high affinity for cell membranes, while two conjugated rings from a fluorochrome which is responsible for emitting a red wavelength when excited by green fluorescent light filters4. DiI has been utilized in many capacities, including successful labeling of the plasma membrane and both anterograde and retrograde labeling in neurons5,6. DiI has previously been used in perfusion protocols while visualizing the vasculature of mice7.
Axolotls (Ambystoma mexicanum) are salamanders that live exclusively in brackish lakes near Mexico City, Mexico. These animals have become an important model for understanding regenerative processes as they can regenerate full limbs, tail (including nerve cord), portions of the heart and other internal organs, and portions of the eye as adults8,9. Additionally, with the recent application of genetic tools in axolotls, unprecedented insight into the molecules and cells driving these processes is now possible8. The successful regeneration of an entire limb requires an extensive revascularization process, which may play a significant role in regeneration beyond simply the traditional functions of blood vessels in providing oxygen and nutrients. Understanding revascularization in the context of tissue regeneration is imperative. Axolotl blood vessels have previously been visualized using India Ink, and while the results were intriguing, this process has not been revisited in subsequent decades10. We sought to adapt a DiI perfusion protocol developed for use in mammals to allow for a complete perfusion and visualization of the axolotl vasculature7. This protocol describes the steps taken to successfully perfuse and subsequently visualize the axolotl circulation with a DiI staining technique. This procedure will allow for precise visualization of patent blood vessels in homeostatic tissues, as well as in regenerating tissues, and provides a novel method for visualization and analysis of the revascularization process in the axolotl.
All axolotl experimentation was performed in accordance with Brigham and Women's Hospital's (BWH) Institutional Animal Care and Use Committee.
1. Set up Perfusion Experiment
2. Opening the Axolotl Chest
3. Perfusion of the Axolotl
4. Ending the Perfusion and Visualization Preparation
5. Visualization the Perfused Axolotl
With DiI staining, the vasculature of the axolotl can be easily visualized. Blood vessels of animals perfused with the lipophilic dye are immediately visible under a fluorescent confocal microscope. Figure 1.1-1.5 is a schematic representation of the perfusion protocol. After perfusion with the bright pink dye, a successfully perfused axolotl will appear pink. Using a green fluorescent filter on a confocal microscope a red emission of the vas...
Visualization of the vasculature of the axolotl can be successfully accomplished via perfusion with the lipophilic carbocyanine dye, DiI. In this study, we describe a novel protocol for the perfusion of the axolotl with DiI using a peristaltic pump. We also show the subsequent visualization of the axolotl vasculature using a fluorescent confocal microscope. This protocol was an adaptation of the rodent DiI perfusion protocol seen in Li et al.7, however major differences between the rodent...
The authors have nothing to disclose.
This research was supported by the Brigham & Women’s Hospital and the March of Dimes. The authors would like to thank all of the members of the Whited Lab for their support and advice.
Name | Company | Catalog Number | Comments |
Peristaltic Pump | Marshall Scientific | RD-RP1 | |
Perfusion tubing | Excelon Lab & Vacuum Tubing | 436901705 | size S1A |
27g butterfly needle | EXELint Medical Products | 26709 | |
NaCl | AmericanBio | 7647-14-5 | |
KCl | AmericanBio | 7747-40-7 | |
Na2HPO4 | AmericanBio | 7558-79-4 | |
NaH2PO4 | AmericanBio | 10049-21-5 | |
Distilled water | |||
HCl | AmericanBio | 7647-01-0 | |
Glucose | ThermoFischer | A2494001 | |
1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate | Sigma Aldrich | 468495 | |
Ethanol (100% vol/vol) | Sigma Aldrich | 64-17-5 | |
Surgical foreceps | Medline | MDG0748741 | |
Polystyrene foam frame | any polystyrene foam square with an axolotl-shaped cut out | ||
Surgical scissors | Medline | DYND04025 | |
Scalpel | Medline | MDS15210 | |
Absorbent underpad | Avacare Medical | PKUFSx | |
Paper towels | |||
Standard disposable transfer pipette | Fisherbrand | 50216954 | |
Clamp stand | Adafruit | 291 | |
Ethyl 3-aminobenzoate methanesulfonate | Sigma Aldrich | E10521 | Tricaine powder |
Adult axolotl | |||
MgSO4 | AmericanBio | 10034-99-8 | |
CaCl2 | Sigma Aldrich | C1016-100G | |
NaHCO3 | Sigma Aldrich | S5761-500G | |
Plastic tanks | Varying size appropriate for the axolotl | ||
Paraformaldehyde | Sigma Aldrich | 30525-89-4 | |
Axolotl | |||
Leica Microscope | Leica | M165 FC | |
ET-CY3 Fluorescent Filter | Leica | M205FA/M165FC | |
MS-222 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone