Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Low-field (L-band, 1.2 GHz) electron paramagnetic resonance using soluble nitroxyl and trityl probes is demonstrated for assessment of physiologically important parameters in the tumor microenvironment in mouse models of breast cancer.
This protocol demonstrates the capability of low-field electron paramagnetic resonance (EPR)-based techniques in combination with functional paramagnetic probes to provide quantitative information on the chemical tumor microenvironment (TME), including pO2, pH, redox status, concentrations of interstitial inorganic phosphate (Pi), and intracellular glutathione (GSH). In particular, an application of a recently developed soluble multifunctional trityl probe provides unsurpassed opportunity for in vivo concurrent measurements of pH, pO2 and Pi in Extracellular space (HOPE probe). The measurements of three parameters using a single probe allow for their correlation analyses independent of probe distribution and time of the measurements.
A key role of the TME in cancer progression and therapy is increasingly appreciated1. Among important physiological parameters of the TME in solid tumors, tissue hypoxia2, acidosis3,4, high reducing capacity5, elevated concentrations of intracellular GSH6,7, and interstitial Pi8 are well documented. Noninvasive in vivo pO2, pH, Pi, GSH, and redox assessments provide unique insights into the biological processes in TME, and help advance tools for pre-clinical screening of anti-cancer drugs and TME-targeted therapeutic strategies. A reasonable radiofrequency penetration depth in tissues by magnetic resonance imaging (MRI) and low-field EPR-based techniques makes them the most appropriate approaches for noninvasive assessment of these TME parameters. MRI relies largely on imaging water protons and is widely used in clinical settings to provide anatomical resolution but lacks functional resolution. The phosphorus-31 nuclear magnetic resonance (31P-NMR) measurements of extracellular Pi concentration and pH based on a signal from endogenous phosphate are potentially attractive for TME characterization, but are normally masked by several times higher intracellular Pi concentrations9,10. In contrast to this, EPR measurements rely on spectroscopy and imaging of specially designed paramagnetic probes to provide functional resolution. Note that exogenous EPR probes have an advantage over exogenous NMR probes due to the much higher intrinsic sensitivity of EPR and absence of endogenous background EPR signals. The recent development of a dual function pH and redox nitroxyl probe11 and multifunctional trityl probe12 provides unsurpassed opportunities for in vivo concurrent measurements of several TME parameters and their correlation analyses independent on probe distribution and time of measurement. To our knowledge, there are no other methods available to concurrently assess in vivo physiologically important chemical TME parameters in living subjects, such as pO2, pHe, Pi, redox, and GSH.
Probes for In Vivo Functional Measurements:
Figure 1 shows chemical structures of the paramagnetic probes used to access TME parameters, which include particulate and soluble probes. High functional sensitivity, stability in living tissue, and minimal toxicity are a few benefits that make particulate probes preferred over soluble probes for in vivo EPR oximetry. For example, particulate probes have increased retention times at the site of tissue implant compared to soluble probes allowing for longitudinal measurement of tissue pO2 over several weeks. On the other hand, soluble probes outperform particulate probes by providing spatial-resolved measurements using EPR-based imaging techniques as well as allowing concomitant analyses from multiple functionalities (pO2, pH, Pi, redox, and GSH).
Figure 1. Chemical structures of the paramagnetic probes that assemble TME assessment assay. This includes the particulate pO2 probe, LiNc-BuO (R = -O(CH2)3CH3), and soluble probes: dual function pH and redox probe, NR; GSH-sensitive probe, RSSR; and multifunctional pO2, pH, and Pi probe of the extracellular microenvironment, the HOPE probe. The synthesis of these probes has been described in the provided references 11,12. Please click here to view a larger version of this figure.
All animal work was performed in accordance with WVU IACUC approved protocol.
1. Probe Synthesis and Calibration
2. Mouse Models of Breast Cancer
3. Probe Delivery for In Vivo Functional Measurements
4. In Vivo Functional Measurements
5. Statistical Analysis
Tissue pO2 Assessment Using the LiNc-BuO Probes:
Using the procedure described under step 1.1, we performed the calibration of freshly prepared LiNc-BuO microcrystals suspension. Figure 2 shows the typical oxygen dependence of the linewidth of the LiNc-BuO probe, as well as its exemplified EPR sp...
The presented methods allow for noninvasive in vivo assessment of the critical parameters of the chemical TME, namely pO2, pH, redox status, and concentrations of interstitial Pi and intracellular GSH. Magnetic resonance techniques, such as MRI and low-field EPR, are the methods of choice for noninvasive in vivo profiling of these TME parameters. MRI visualizes anatomical structures but lacks functional sensitivity. In contrast to MRI, EPR techniques provide functional sensitivity to...
The authors have nothing to disclose.
This work was partially supported by NIH grants CA194013, CA192064 and U54GM104942. The WVCTSI is acknowledged for start-up to VVK, AB, and TDE. The authors thank Dr. M. Gencheva and K. Steinberger for the assistance with the illustrative experiments. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Name | Company | Catalog Number | Comments |
L-band EPR spectrometer | Magnettech, Germany | L-band (1.2 GHz) electron paramagnetic resonance (EPR) spectrometer for collection in vitro and in vivo spectra of paramagnetic molecules | |
Temperature & Gas Controller | Noxygen, Germany | Temperature & Gas Controller designed to control and adjust the temperature and gas composition | |
Sonicator | Fisher Scientific | ||
GSH (L-Glutathione reduced) | Sigma-Aldrich | G4251 | |
MMTV-PyMT mice | In house | ||
DMEM | Thermo Fisher Scientific | 11995065 | |
Met-1 murine breast cancer cells | In house | ||
C57Bl/6 wild type mice | Jackson Laboratory | ||
Trypsin | Thermo Fisher Scientific | 25200056 | |
Trypan Blue Exclusion Dye | Thermo Fisher Scientific | T10282 | |
Ohmeda Fluotec 3 | |||
Isoflurane (IsoFlo) | Abbott Laboratories | ||
Sodium phosphate dibasic | Sigma-Aldrich | S9763 | |
Sodium phosphate monobasic | sigma-Aldrich | S07051 | |
Sodium Chloride | sigma-Aldrich | S7653 | |
Hydrochloric acid | sigma-Aldrich | 320331 | |
Sodium Hydroxide | sigma-Aldrich | S8045 | |
Glucose | sigma-Aldrich | ||
Glucose oxydase | sigma-Aldrich | ||
Lauda Circulator E100 | Lauda-Brikmann | ||
pH meter Orion | Thermo Scientific | ||
LiNc-BuO probe | In house | The Octa-n-Butoxy-Naphthalocyanine probe was synthesizided according to ref 13 | |
NR probe | In house | The Nitroxide probe was synthesizided according to ref 11 | |
RSSR probe | In house | The di-Nitroxide probe was synthesizided according to ref 15 | |
HOPE probe | In house | The monophoshonated Triarylmethyl probe was synthesizided according to ref 12 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone