Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This article provides a detailed protocol for the preparation and evaluation of monoclonal antibodies against natural products for use in various immunoassays. This procedure includes immunization, cell fusion, indirect competitive ELISA for positive clone screening, and monoclonal hybridoma preparation. The specifications for antibody characterization using MALDI-TOF-MS and ELISA analyses are also provided.
The analysis of the bioactive components present in foods and natural products has become a popular area of study in many fields, including traditional Chinese medicine and food safety/toxicology. Many of the classical analysis techniques require expensive equipment and/or expertise. Notably, enzyme-linked immunosorbent assays (ELISAs) have become an emerging method for the analysis of foods and natural products. This method is based on antibody-mediated detection of the target components. However, as many of the bioactive components in natural products are small (<1,000 Da) and do not induce an immune response, creating monoclonal antibodies (mAbs) against them is often difficult. In this protocol, we provide a detailed explanation of the steps required to generate mAbs against target molecules as well as those needed to create the associated indirect competitive (ic)ELISA for the rapid analysis of the compound in multiple samples. The procedure describes the synthesis of the artificial antigen (i.e., the hapten-carrier conjugate), immunization, cell fusion, monoclonal hybridoma preparation, characterization of the mAb, and the ELISA-based application of the mAb. The hapten-carrier conjugate was synthesized by the sodium periodate method and evaluated by MALDI-TOF-MS. After immunization, splenocytes were isolated from the immunized mouse with the highest antibody titer and fused with the hypoxanthine-aminopterin-thymidine (HAT)-sensitive mouse myeloma cell line Sp2/0 -Ag14 using a polyethylene glycol (PEG)-based method. The hybridomas secreting mAbs reactive to the target antigen were screened by icELISA for specificity and cross-reactivity. Furthermore, the limiting dilution method was applied to prepare monoclonal hybridomas. The final mAbs were further characterized by icELISA and then utilized in an ELISA-based application for the rapid and convenient detection of the example hapten (naringin (NAR)) in natural products.
Monoclonal antibodies (mAbs), also known as mono-specific antibodies, are produced from a single B-lymphocyte clone and are composed of monovalent antibodies that all bind to the same epitope1. In recent years, many medicinal plant-derived natural products have been used in the treatment of various diseases2. Indeed, many small molecular compounds originally derived from natural products are now applied as first-line drugs, such as artemisinin for malaria and paciltaxel (taxol) for cancer2,3. The study of natural products has made rapid progress, largely due to the tremendous development and optimization of conventional analysis techniques, including high performance liquid chromatography (HPLC) and mass spectrometry (MS). However, there are still some limitations associated with these methods, such as their complex pretreatment protocols and associated costs with regards to time, labor/expertise, and required instruments4.
Recently, mAb-based enzyme-linked immunosorbent assays (ELISAs) have been applied to qualitatively and quantitatively analyze food and natural products. In fact, this method has been applied for both biological samples analysis and clinical testing and has been shown to be accurate, sensitive, and highly efficient while also avoiding the tedious pretreatment steps associated with other analyses5,6.
When using mAb-based ELISAs to study complex natural products, preparation of the monoclonal antibodies is one of the core steps. Unfortunately, the mAbs specific to the small bioactive components present in these types of substances6,7,8,9,10,11,12,13,14,15 are often limited compared to the protein antigens. To circumvent this issue, we have developed a protocol to specifically generate mAbs against small compounds. The protocol presented here includes artificial antigen synthesis, mouse immunization, cell fusion, indirect competitive ELISA, and monoclonal hybridoma preparation.
Notably, our research group has been studying the formation of mAbs against small bioactive compounds from traditional Chinese medicines and developing their applications for years. In our on-going studies, we have developed mAbs against baicalin16, puerarin17, glycyrrhizic acid18, paeoniflorin19, ginsenoside Re20, ginsenoside Rh121, and many other small molecules. Our ELISA protocols based on these mAbs have been used in a number of studies to evaluate the pharmacokinetics of these small molecules as well as their interactions with other bioactive compounds. Moreover, using these mAbs, we have also developed immunoaffinity chromatography methods for the separation of structural analogues, including epimers. Recently, we prepared a lateral flow immunoassay using our anti-puerarin mAb that was subsequently used for rapid, on-site detection of this compound. Our results indicate that our mAb-based assays are indispensable and convenient tools for studying the biology and quality of natural-product-derived compounds, particularly those used in traditional Chinese medicines.
All of the animal procedures performed in this study have been approved by the Ethical Review Committee at the Beijing University of Chinese Medicine (approval number 2016BZYYL00109).
NOTE: Female BALB/c mice (8 weeks old) were immunized with hapten-carrier protein conjugates. When used alone, a small molecule (<1,000 Da) cannot elicit an immune response. However, conjugating the small molecule to a carrier macromolecule results in antigen synthesis. In this context, the small molecule is labeled a hapten. Hapten conjugation is a necessary and effective strategy for mAb production. To avoid cross reactivity, two different protein carriers, such as bovine serum albumin (BSA) and ovalbumin (OVA) or keyhole limpet hemocyanin (KLH) and BSA, should be used as the immunogens (for animal immunization) and coating antigens (to coat the plate for anti-serum detection). BSA and OVA are used as an example in this protocol.
1. Preparation of the Immunogen and Coating Antigen
NOTE: For artificial antigen synthesis, use the appropriate functional group (e.g., hydroxyl, sulfhydryl carboxyl acid, or amino) as the side arm for covalent binding with the carrier protein. The conjugation methods include periodate oxidation, the carbodiimide method, a mixed anhydrides reaction, a glutaraldehyde reaction, and the succinate method. This protocol uses naringin (NAR), a well-known flavanone glycoside, as an example compound. NAR is a small compound (581 Da) present in citrus fruits as well as various traditional Chinese medicines.
2. Immunization
NOTE: A total of 5 BALB/c female mice (8 weeks old) were used: 4 for NAR conjugate immunization and 1 for control (PBS) immunization.
3. Preparation for Cell Fusion
4. Cell Fusion
5. Indirect Competitive ELISA (icELISA)
6. Preparation of Monoclonal Hybridomas
Generation of monoclonal hybridomas
The molecular weight of the hapten-carrier conjugate was confirmed by MALDI-TOF-MS analysis. As the molecular weight of both BSA and the NAR are known, the number of small molecules conjugated with BSA could be calculated. Figure 1 shows representative spectral results for NAR-BSA22, which displays a broad ...
Here, we present a protocol for the successful production of mAbs against natural product-derived small molecules. The essential steps in the procedure have been outlined, and we have demonstrated the utility of this protocol using NAR as an example small molecule. The example spectra, reactivity analyses, and icELISA results all show representative experimental and control data that is obtained using this protocol. Example images of the hybridomas provide a visual representation of what the researcher should be looking ...
The authors have nothing to disclose.
This work was supported by the National Natural Science Foundation of China (grant numbers 81573573, 81473338, and 81503344) and the Classical Prescription Basic Research Team at the Beijing University of Chinese Medicine.
Name | Company | Catalog Number | Comments |
800 mesh (40 μm nylon) filter | FALCON | 352340 | |
24 well culture plate | NUNC | 119567 | |
25 cm2 Flask | Labserv | 310109016 | |
3,3’,5,5’-Tetramethylbenzidine(TMB) | Sigma Aldrich | 860336 1G | |
75 cm2 Flask | Corning | 430720 | |
96 well culture plate | NUNC | 117246 | |
bovine serum albumin | AMRESCO | 332 | |
cell strainer | FALCON | 352340 | |
centrifuge tube 15 mL | Corning | 430645 | |
centrifuge tube 50 mL | Corning | 430828 | |
cryotubes, 1 mL | Sigma Aldrich | V7384-1CS | |
cultivator | DRP-9082 | Samsung | |
dialysis membrane (10kDa) | Heng Hui | 45-10000D | |
dimethylsulfoxide | Sinopharm Chemical | DH105-10 | |
electronic balance | BS124-S | Sartorius | |
ELISA plates, 96 well | NUNC | 655101 | |
ethanol, 96% | Sinopharm Chemical | ||
Fetal bovine serum | Gibco | 16000-044 | |
fetal calf serum | Invitrogen | 10270106 | |
Freund´s adjuvant, complete | Sigma Aldrich | SLBM2183V | |
Freund´s adjuvant, incomplete | Sigma Aldrich | SLBL0210V | |
Gelatin | AMRESCO | 9764-500g | |
Gradient cooler container | Nalgene | 5100-0001 | |
HAT media supplement | Sigma Aldrich | H0262-10VL | |
HRP-conjugated goat-anti-mouse IgG antibody | applygen | C1308 | |
HT media supplement | Sigma Aldrich | H0137-10VL | |
Inverted Microscope | IX73 | Olympus | |
keyhole limpet hemocyanin | Sigma Aldrich | H8283 | |
MALDI-TOF-MS | Axima-CFR plus | Axima | |
Microplate Reader | BioTex | ELX-800 | |
mouse | Vital River | BALB/c | |
ovalbumin | Beijing BIODEE | 5008-25g | |
PEG | Sigma Aldrich | RNBC6325 | |
Penicillin&Streptomycin solution | Hyclone | SV30010 | |
Pipette 10 mL | COSTAR | 4488 | |
Pipette 25 mL | FALCON | 357525 | |
RPMI 1640 | Corning | 10-040-CVR | |
skim milk | applygen | P1622 | |
sodium periodate | Sinopharm Chemical | BW-G0008 | |
Sulfo-GMBS | Perbio Science Germany | 22324 | |
TipOne Tips 1,000 µL | Starlab | S1111-2021 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone