Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We describe methods to develop an experimental model of diet-induced metabolic syndrome (MetS) in rabbits using a high-fat, high-sucrose diet. Animals developed central obesity, mild hypertension, pre-diabetes, and dyslipidemia, thus reproducing the main components of human MetS. This chronic model will allow acquisition of knowledge underlying mechanisms of disease progression.
In recent years, obesity and metabolic syndrome (MetS) have become a growing problem for public health and clinical practice, given their increased prevalence due to the rise of sedentary lifestyles and unhealthy eating habits. Thanks to animal models, basic research can investigate the mechanisms underlying pathological processes such as MetS. Here, we describe the methods used to develop an experimental rabbit model of diet-induced MetS and its assessment. After a period of acclimation, animals are fed a high-fat (10% hydrogenated coconut oil and 5% lard), high-sucrose (15% sucrose dissolved in water) diet for 28 weeks. During this period, several experimental procedures were performed to evaluate the different components of MetS: morphological and blood pressure measurements, glucose tolerance determination, and the analysis of several plasma markers. At the end of the experimental period, animals developed central obesity, mild hypertension, pre-diabetes, and dyslipidemia with low HDL, high LDL, and an increase of triglyceride (TG) levels, thus reproducing the main components of human MetS. This chronic model allows new perspectives for understanding the underlying mechanisms in the progression of the disease, the detection of preclinical and clinical markers that allow the identification of patients at risk, or even the testing of new therapeutic approaches for the treatment of this complex pathology.
Obesity and metabolic syndrome (MetS) have become a growing problem for public health and clinical practice, given their increased prevalence due to the rise of sedentary lifestyles and unhealthy eating habits1. There are several definitions of MetS, but most of them describe it as a cluster of cardiovascular and metabolic alterations such as abdominal obesity, reduced HDL and elevated LDL cholesterol, elevated triglycerides, glucose intolerance, and hypertension2,3,4. Diagnosis requires that three out of these five criteria are present.
Owing to animal models, basic research has been able to investigate the mechanisms underlying pathological processes such as MetS. Several animal models have been used, but it is of crucial importance that the model of choice reproduces the main clinical manifestations of the human pathology (Figure 1). With this aim, animal models considered similar to humans, mainly canine and swine, have been developed (see Verkest5 and Zhang & Lerman6 for review). However, canine models do not show all the components of MetS, given that the development of atherosclerosis or hyperglycemia in dogs by means of the diet is questionable5. Swine models present the most anatomical and physiological similarity with humans, and thus offer significant predictive power for elucidating the mechanisms underlying MetS, but their maintenance and the complexity of the experimental procedures make the use of this model very labor intensive and costly6.
On the other hand, rodent models (mouse and rat), diet-induced spontaneous and transgenic, have been extensively used in the literature for the study of obesity, hypertension, and MetS, and its pathological consequences in different organs and systems (see Wong et al.7 for review). Although the use of these models is more affordable than canine or swine, they have important drawbacks. Indeed, depending on the strain, animals develop some components of MetS, whereas others such as hypertension, hyperglycemia, and hyperinsulinemia are absent7. Furthermore, one of the main components of MetS, obesity, in some genetically modified strains, does not only depend on factors associated with the diet, rather it has been shown that some animals become obese with normal or even reduced food intake8. Finally, mice and rats show a natural deficiency in cholesteryl ester transfer protein (CETP) and use HDL as the major means of cholesterol transport, which makes them relatively resistant to the development of atherosclerosis. This is an important difference in lipid metabolism with humans, who express CETP and transport their cholesterol mainly in LDL9.
Conversely, the laboratory rabbit represents an intermediate stage between the larger animal and rodent experimental models. Thus, the rabbit can be easily submitted to different types of protocols with minimal requirements of personnel and maintenance, being more easily handled in experimental procedures than larger animal models. Furthermore, it has been reported that rabbits fed with a high-fat diet have similar hemodynamic and neurohumoral changes as obese humans8,10,11. Of note, regarding lipid metabolism, the rabbit has abundant CETP in plasma and their lipoprotein profile is LDL-rich12, which is also similar to humans. Additionally, rabbits develop hyperlipidemia quite rapidly given that, as herbivores, they are very sensitive to dietary fat13.
Figure 1: Comparison of MetS animal models. See Verkest5, Zhang and Lerman6, and Wong et al.7 for review. "" indicates an advantage and "
" indicates a disadvantage. *controversial, depends on the study, **as pointed out by Carroll et al.8, some genetically modified strains become obese independently of food intake. CEPT: cholesteryl ester transfer protein. GTT: glucose tolerance test. Please click here to view a larger version of this figure.
In order to elucidate the basic mechanisms underlying the pathological remodeling produced by MetS in the different organs and systems, and to gain understanding of this complex pathology, the choice of an experimental model that reproduces the main components of human MetS is essential. The rabbit can provide many advantages given its similarity with human physiology and the affordability of use in chronic protocols and measurements. In this line, few diet-induced rabbit models using high-fat and high-sucrose diet have been used14,15,16,17,18,19 (Table 1), and a characterization of the different components of MetS is of great importance when relating a phenotype with organ remodeling. Thus, this article's main objective is to describe the methods to develop a model of diet-induced MetS in rabbits that allows the study of its pathophysiology and impact in organ remodeling.
Study | Diet | Duration | Breed | MetS components | |||
Ob | HT | HG | Dl | ||||
Yin et al. (2002)14 | · 10% fat | 24 weeks | · Male NZW | ![]() | - | ![]() | ![]() |
· 37% sucrose | · 2 kg | ||||||
Zhao et al. (2007)15 | · 10% fat | 36 weeks | · Male JW | ![]() | ![]() | ![]() | ![]() |
· 30% sucrose | · 16 weeks | ||||||
Helfestein et al. (2011)16 | · 10% fat | 24 weeks | · Male NZW | ![]() | - | ![]() | ![]() |
· 40% sucrose | · 12 weeks | ||||||
· 0.5-0.1 cholesterol | |||||||
Ning et al. (2015)17 | · 10% fat | 8-16 weeks | · Male WHHL | ![]() | - | ![]() | ![]() |
· 30% fructose* | · 12 weeks | ||||||
Liu et al. (2016)18 | · 10% fat | 48 weeks | · Male NZW | ![]() | - | ![]() | ![]() |
· 30% sucrose | · 12 weeks | ||||||
Arias-Mutis et al. (2017)19 | · 15% fat | 28 weeks | · Male NZW | ![]() | ![]() | ![]() | ![]() |
Table 1: Diet-induced MetS rabbit models using high-fat, high-sucrose diet. The symbol "" indicates absence, "
" presence, and "-" not evaluated. *restricted. WHHL, Watanabe heritable hiperlipidemic rabbits. JW, Japanese white rabbits. Ob, obesity. HT, hypertension. HG, hyperglycemia. Dl, dyslipidemia.
Animal care and the experimental protocols used in this study complied with EU directive 2010/63 on the protection of animals used for scientific purposes, and were approved by the Institutional Animal Care and Use Committee (2015/VSC/PEA/00049).
NOTE: The protocol consists of the chronic administration of a high-fat, high-sucrose diet for 28 weeks, and the assessment of the main components of MetS. We used 11 adult male New Zealand White (NZW) rabbits weighing 4.39 ± 0.14 (s.d.) kg, which were 20 - 22 weeks old at the beginning of the experimental protocol. They were housed in a room with humidity (50 ± 5%) and temperature (20 ± 1.5 °C) controlled conditions with a 12-h light cycle. The words "chow" and "diet" may be used interchangeably in the protocol steps.
1. Diet Administration
2. Morphological Assessment
3. Fasting Glycemia and Intravenous Glucose Tolerance Test (IVGTT)
NOTE: It is advisable to start the procedures the same time of day (i.e., 2 - 3 PM).
4. Blood Pressure
5. Plasma Measurements
NOTE: It is advisable to start the procedures the same time of day (i.e., 2 - 3 PM).
MetS represents a cluster of metabolic and cardiovascular abnormalities whose study can be facilitated by the use of experimental models. Indeed, to elucidate the mechanisms underlying the pathological remodeling produced by MetS, the choice of an experimental model that appropriately resembles the human condition and is suitable for research is of crucial importance. Here, we present the methods to induce MetS in rabbit using a diet high in saturated fat and sucrose, and a detailed chara...
The establishment of an appropriate experimental model can provide a more consistent and reliable method to study the development of MetS, and it is also necessary to understand the basic mechanisms that underlie the organs and systems remodeling. Here, we describe the methods used to develop a relevant experimental model of diet-induced MetS and how to assess the main components of this cluster of metabolic and cardiovascular abnormalities that characterize this model: central obesity, hypertension, glucose intolerance,...
The authors declare that they have no competing financial interests.
This work was supported by Generalitat Valenciana (GV2015-062), Universitat de València (UV-INV-PRECOMP14-206372) to MZ, Generalitat Valenciana (PROMETEOII/2014/037) and Instituto de Salud Carlos III-FEDER funds (CIBERCV CB16/11/0486) to FJC.
Name | Company | Catalog Number | Comments |
Veterinary scale | SOEHNLE | 7858 | Scale https://www.soehnle-professional.com/en/productgroup/details/103/veterinary-scale |
Shovel for aluminum feed | COPELE | 10308 | Shovel for aluminum feed http://copele.com/es/herramientas/48-pala-para-pienso-de-aluminio.html |
Balance | PCE Ibérica | PCE-TB 15 | Balance http://www.pce-iberica.es/medidor-detalles-tecnicos/balanzas/balanza-compacta-pce-bdm.htm |
Strainer (20 cm diam.) | ZWILLING | 39643-020-0 | Strainer https://es.zwilling-shop.com/Menaje-del-hogar/Menaje-de-cocina/Menaje-especial/Accesorios/Colador-20-cm-ZWILLING-39643-020-0.html |
Bowl | ZWILLING | 40850-751-0 | Scale https://www.soehnle-professional.com/en/productgroup/details/103/veterinary-scale |
Funnel | BT Ingenieros | not available | Funnel http://www.bt-ingenieros.com/fluidos-y-combustibles/961-juego-de-4-embudos-de-plastico.html?gclid=EAIaIQobChMIuInui_y-1QIVASjTCh28Zwf-EAQYBSABEgK7xPD_BwE |
Introcan Certo 22G blue | B Braun | 4251318 | Peripheral intravenous catheter http://www.bbraun-vetcare.es/producto/introcan- |
Propofol Lipuro 10 mg/ml vial 20 ml | B Braun | 3544761VET | General intravenous anesthetic http://www.bbraun-vetcare.es/producto/propofol-lipuro-1- |
FisioVet serum solution 500ml | B Braun | 472779 | Scale https://www.soehnle-professional.com/en/productgroup/details/103/veterinary-scale |
Askina Film Vet 1,25cm x 5m | B Braun | OCT13501 | Plastic Plaster http://www.bbraun-vetcare.es/producto/askina-film-vet |
Askina Film Vet 2,50cm x 5m | B Braun | OCT13502 | Plastic Plaster http://www.bbraun-vetcare.es/producto/askina-film-vet |
Injekt siringe 10ml luer | B Braun | 4606108V | Injection-aspiration syringe of two single-use bodies http://www.bbraun-vetcare.es/producto/injekt- |
Seca 201 | seca | seca 201 | Ergonomic tape for measuring perimeters https://www.seca.com/es_es/productos/todos-los-productos/detalles-del-producto/seca201.html#referred |
Sterican 21Gx1" - 0,8x25mm verde | B Braun | 4657543 | Single Use Hypodermic Needle http://www.bbraun-vetcare.es/producto/agujas-hipodermicas-sterican- |
CONTOURNEXT-Meter | BAYER | 84413470 | Blood glucose analysis system http://www.contournextstore.com/en/contour-next-meter-2 |
CONTOUR NEXT test strips | BAYER | 83624788 | Blood glucose test strips http://www.contournextstore.com/en/contour-next-test-strips-100-ct-package |
MICROLET NEXT LANCING DEVICE | BAYER | 6702 | Lancing device http://www.contournextstore.com/en/new-microlet-next-lancing-device |
MICROLET 2 Colored Lancets | BAYER | 81264857 | Ultra-thin sterile lancet for capillary puncture http://www.contournextstore.com/en/microlet2-colored-lancets-100s |
Injekt 20ml luer siringe | B Braun | 4606205V | Scale https://www.soehnle-professional.com/en/productgroup/details/103/veterinary-scale |
Askina Mullkompressen 7,5x7,5cm - sterile | B Braun | 9031219N | Sterile gauze packets in envelopes http://www.bbraun-vetcare.es/producto/askina-mullkompressen-esteril |
Emla lidocaine/prilocaine | AstraZeneca | not available | Local anesthetics https://www.astrazeneca.es/areas-terapeuticas/neurociencias.html |
Introcan Certo 18G short | B Braun | 4251342 | Peripheral intravenous catheter http://www.bbraun-vetcare.es/producto/introcan- |
Introcan Certo 20G | B Braun | 4251326 | Peripheral intravenous catheter http://www.bbraun-vetcare.es/producto/introcan- |
Blood Pressure Transducers-MA1 72-4497 | Harvard Apparatus | 724497 | Transducer for monitoring blood pressure http://www.harvardapparatus.com/physiology/physiological-measurements/transducers/pressure-transducers/research-grade-pressure-transducers.html |
PowerLab 2/26 | AD Instruments | ML826 | Amplifier https://www.adinstruments.com/products/powerlab |
LabChart ver. 6 | AD Instruments | not available | Acquisition software https://www.adinstruments.com/products/labchart |
Animal Bio Amp | AD Instruments | FE136 | Amplifier https://www.adinstruments.com/products/bio-amps#product-FE136 |
K2EDTA 7.2mg | BD | 367861 | Blood collection tubes http://catalog.bd.com/nexus-ecat/getProductDetail?productId=367861 |
Centrifuge | SciQuip | 2-16KL | Centrifuge http://www.sigma-centrifuges.co.uk/store/products/refrigerated-sigma-2-16k-centrifuge/ |
Eppendorf Reference 2, 100 – 1000 μL | Eppendorf | 4920000083 | Pipette https://online-shop.eppendorf.es/ES-es/Pipeteo-44563/Pipetas-44564/Eppendorf-Reference2-PF-42806.html |
Eppendorf Safe-Lock Tubes, 0.5 mL | Eppendorf | 30121023 | Tubes https://online-shop.eppendorf.es/ES-es/Puntas-tubos-y-placas-44512/Tubos-44515/Eppendorf-Safe-Lock-Tubes-PF-8863.html |
NZW rabbits (16-18 weeks old) | Granja San Bernardo | not available | New Zealand White rabbits http://www.granjasanbernardo.com/en/welcome/ |
Sucrose | Sigma | S0389-5KG | Sucrose for drinking solution http://www.sigmaaldrich.com/catalog/product/sigma/s0389?lang=es®ion=ES |
Rabbit maintenance control diet | Ssniff | V2333-000 | Control diet http://www.ssniff.com/ |
Rabbit high-fat diet | Ssniff | S9052-E020 | High-fat diet http://www.ssniff.com/ |
Rabbit rack and drinker | Sodispan | not available | Rack for rabbits https://www.sodispan.com/jaulas-y-racks/racks-conejo-y-cobaya/ |
Rabbit restrainer | Zoonlab | 3045601 | http://www.zoonlab.de/en/index.html |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone