Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This protocol describes the analysis of fluorescently labeled intracellular compartments in budding yeast using multi-color 4D (time-lapse 3D) confocal microscopy. The imaging parameters are chosen to capture adequate signals while limiting photodamage. Custom ImageJ plugins allow labeled structures to be tracked and quantitatively analyzed.
The goal of this protocol is to characterize how membrane compartments form and transform in live cells of budding yeast. Many intracellular compartments in yeast are dynamic, and a full understanding of their properties requires time-lapse imaging. Multi-color 4D confocal fluorescence microscopy is a powerful method for tracking the behavior and composition of an intracellular compartment on a time scale of 5-15 min. Rigorous analysis of compartment dynamics requires the capture of thousands of optical sections. To achieve this aim, photobleaching and phototoxicity are minimized by scanning rapidly at very low laser power, and the pixel dimensions and Z-step intervals are set to the largest values that are compatible with sampling the image at full resolution. The resulting 4D data sets are noisy but can be smoothed by deconvolution. Even with high quality data, the analysis phase is challenging because intracellular structures are often numerous, heterogeneous, and mobile. To meet this need, custom ImageJ plugins were written to array 4D data on a computer screen, identify structures of interest, edit the data to isolate individual structures, quantify the fluorescence time courses, and make movies of the projected Z-stacks. 4D movies are particularly useful for distinguishing stable compartments from transient compartments that turn over by maturation. Such movies can also be used to characterize events such as compartment fusion, and to test the effects of specific mutations or other perturbations.
Compartments of the endomembrane system are in constant flux, and their full characterization requires live cell imaging. Described here is a protocol that employs 4D (time-lapse 3D) confocal microscopy to visualize fluorescently labeled compartments in budding yeasts. The method was developed to track the dynamics of secretory compartments in Pichia pastoris and Saccharomyces cerevisiae1,2,3. This protocol focuses on S. cerevisiae, which has a nonstacked Golgi in which the individual cisternae are optically resolvable4. The unusual Golgi organization in S. cerevisiae enabled the demonstration by 4D microscopy that a Golgi cisterna initially labels with resident early Golgi proteins, and then loses those proteins while acquiring resident late Golgi proteins3,5. This transition can be visualized by creating a strain in which the early Golgi protein Vrg4 is labeled with GFP while the late Golgi protein Sec7 is labeled with a monomeric red fluorescent protein. When individual cisternae are tracked, maturation is observed as a green-to-red conversion3. This type of analysis can provide valuable information about protein localization and compartment identity. For example, two proteins with slightly offset arrival and departure times might sometimes appear to label different compartments in static images, but can be seen in 4D movies to label the same compartment at different time points6,7. Thus, 4D microscopy reveals phenomena that would not otherwise be evident.
Informative 4D microscopy of yeast compartments can be achieved with appropriate procedures and equipment2. Whenever possible, fluorescent protein tagging is performed by gene replacement8 to avoid overexpression artifacts. Because intracellular structures are often very dynamic, 4D imaging is needed to ensure that a structure is tracked reliably over time. The protocol described here employs a laser scanning confocal microscope equipped with high sensitivity detectors. With this device, the entire cell volume of S. cerevisiae can be imaged by confocal microscopy approximately every 1-3 s, with 2 s intervals being typical. Data can be collected for up to 5-15 min depending on the labeling densities of the fluorophores and their photophysical properties. The main hurdle is to minimize photobleaching. For this purpose, the laser intensities are kept as low as possible, the confocal scan speed is maximized, and the optical parameters are configured to image at the Nyquist limit in order to capture the relevant information while avoiding excessive light exposure. These settings are also expected to alleviate phototoxicity, a factor that is often overlooked during live cell imaging9,10,11. The resulting noisy data are processed with bleach correction and deconvolution algorithms to facilitate quantification of fluorescence intensities.
Even with high quality 4D movies, the analysis is tricky because yeast compartments tend to be numerous, heterogeneous, and mobile. Due to the intrinsic limitations of confocal microscopy and the non-optimal settings required for prolonged 4D imaging, fluorescent structures that are near each other are hard to resolve. This problem can be circumvented by focusing on the small number of fluorescent structures that remain optically resolvable for the duration of the labeling period, with the assumption that those structures are representative of the whole population of labeled compartments. Fluorescent compartments that can be reliably tracked are identified by viewing movies of projected Z-stacks and by creating a series of montages in which the optical sections for each time point are arrayed on a computer screen. This analysis employs custom ImageJ12 plugins, which allow an individual structure to be tracked in isolation.
Recent methods papers covered the use of fluorescent proteins in yeast13 as well as the theory and practice of 4D confocal imaging of yeast cells2. This protocol focuses on the key practical aspects of a 4D imaging experiment. It includes some enhancements to previously described procedures, as well as updated versions of the ImageJ plugin code and documentation. The example shown focuses on Golgi dynamics, but this protocol is equally suitable for imaging other yeast compartments.
1. Preparation
2. Imaging
3. Deconvolution
4. Bleach Correction and Movie Generation
The example given here documents and quantifies the maturation of two yeast Golgi cisternae as visualized by dual-color 4D confocal microscopy3. A yeast cell contains on the order of 10-15 Golgi cisternae, each of which matures over a time course of approximately 2-4 min. Maturation can be visualized by tagging the early Golgi marker Vrg4 with GFP and by tagging the late Golgi marker Sec7 with a red fluorescent protein such as mCherry or mScarlet. An individual cis...
4D confocal imaging of yeast organelles requires careful tuning of multiple parameters. The major concern is photobleaching and phototoxicity. A typical 4D movie involves collecting thousands of optical sections, so the laser illumination must be kept as low as possible. Tandem fluorescent protein tags can be used to boost the signal without increasing expression of the tagged protein16,17. Maximizing the scan speed helps to limit photodamage, and also allows Z-s...
The authors declare that they have no competing financial interests.
This work was supported by NIH grant R01 GM104010. Thanks for assistance with fluorescence microscopy to Vytas Bindokas and Christine Labno at the Integrated Microscopy Core Facility, which is supported by the NIH-funded Cancer Center Support Grant P30 CA014599.
Name | Company | Catalog Number | Comments |
35 mm glass bottom dishes No. 1.5 | MatTek | P35G-0.170-14-C | Imaging dishes |
Concanavalin A powder | Sigma-Aldrich | C2010 | |
Trolox | Vector Laboratories | CB-1000 | |
Leica SP8 confocal microscope | Leica Microsystems | ||
Leica Application Suite X | Leica Microsystems | Microscope software | |
Huygens Essential software, version 17.04 | Scientific Volume Imaging | Deconvolution software | |
ImageJ | NIH | Image processing and analysis software |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone