Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We propose a standardized protocol to characterize the cellular composition of late-stage murine atherosclerotic lesions including systematic methods of animal dissection, tissue embedding, sectioning, staining, and analysis of brachiocephalic arteries from atheroprone smooth muscle cell lineage tracing mice.
Atherosclerosis remains the leading cause of death worldwide and, despite countless preclinical studies describing promising therapeutic targets, novel interventions have remained elusive. This is likely due, in part, to a reliance on preclinical prevention models investigating the effects of genetic manipulations or pharmacological treatments on atherosclerosis development rather than the established disease. Also, results of these studies are often confounding because of the use of superficial lesion analyses and a lack of characterization of lesion cell populations. To help overcome these translational hurdles, we propose an increased reliance on intervention models that employ investigation of changes in cellular composition at a single cell level by immunofluorescent staining and confocal microscopy. To this end, we describe a protocol for testing a putative therapeutic agent in a murine intervention model including a systematic approach for animal dissection, embedding, sectioning, staining, and quantification of brachiocephalic artery lesions. In addition, due to the phenotypic diversity of cells within late-stage atherosclerotic lesions, we describe the importance of using cell-specific, inducible lineage tracing mouse systems and how this can be leveraged for unbiased characterization of atherosclerotic lesion cell populations. Together, these strategies may assist vascular biologists to more accurately model therapeutic interventions and analyze atherosclerotic disease and will hopefully translate into a higher rate of success in clinical trials.
Atherosclerosis is the leading cause of morbidity and mortality worldwide underlying the majority of coronary artery disease, peripheral artery diseases, and stroke. Late-stage coronary atherosclerosis can lead to severe complications including myocardial infraction accounting for nearly 16% of world population mortality1,2. Due to its devastating impact on public health, substantial effort has been made to decipher the mechanisms driving atherosclerosis progression, as well as to develop novel therapeutic strategies. Yet, the Likelihood of Approval (LOA) rate of clinical trials for cardiovascular disease is among the lowest when compared with other clinical fields (only 8.7% for phase I)3. This can be explained in part by many barriers that atherosclerosis poses to efficient drug development including its nearly ubiquitous nature, clinically-silent progression, and significant disease heterogeneity. Moreover, the suboptimal design of preclinical animal studies can also be accounted for the lack of success in clinical translation. Specifically, we believe it is necessary to implement intervention studies whenever possible to investigate the efficacy of therapeutic strategies. Also, there is a critical need to perform standardized procedures for lesion analyses including advanced characterization of late-stage atherosclerotic lesion cellular composition by fate mapping and phenotyping.
The vast majority of atherosclerosis studies focus on models of atherosclerosis prevention consisting of drug treatment or gene manipulation (knockout or knock-in) in healthy young mice, prior to the disease initiation and progression. These studies have uncovered a large number of genes and signaling molecules that play a role in atherosclerosis development. However, most of these targets failed to translate to efficient therapies in human. Indeed, it is difficult to extrapolate the effect a therapy has on healthy young mice to elderly patients with advanced atherosclerotic lesions. As such, the implementation of intervention studies in the preclinical experimental pipeline likely provides a more accurate depiction of the relevance and efficacy of a new therapeutic. The idea is supported by the strikingly divergent effects of inhibiting the pro-inflammatory cytokine Interleukin-1β (IL-1β) when employing a prevention4,5,6 or intervention strategy7. Differences between prevention and intervention studies suggest that different cellular processes occur at different phases of atherosclerosis development and highlights the fact that prevention studies are likely insufficient to model the clinical scenario adequately.
The American Heart Association recently published a scientific statement detailing recommendations for proper experimental design, procedural standardization, analysis, and reporting of animal atherosclerosis studies8. It highlights the benefits and limitations of predominant techniques used in the field. For example, en face Sudan IV staining of the aorta is often performed as a first read-out. Although en face Sudan IV staining of lipid deposition is a suitable method for assessment of global plaque burden, it is unable to distinguish early-stage fatty streak lesions from more advanced late-stage lesions. As such, the interpretation of en face staining is often ambiguous and superficial9. Careful analysis of tissue cross sections using the morphologic parameters vessel, lesion, and lumen size and quantification of indices of lesion stability provides a more accurate understanding of the effect of an experiment.
Finally, human histopathology studies have suggested that cellular composition is a better predictor of rupture than the lesion size itself, with lesions poor in smooth muscle cells (SMC) and rich in macrophages being more susceptible to rupture10,11. These observations were based on staining for markers classically used for cell identification (i.e., ACTA2 for SMC and LGALS3 or CD68 for macrophages). However, the expression of these markers is not strictly restricted to a single cell type in atherosclerotic lesions due to the plasticity of multiple lineages including SMC, endothelial cells and myeloid cells12. In particular, the unambiguous identification of SMC within atherosclerotic lesion was virtually impossible until the past decade because of the property of these cells to dedifferentiate and repress their lineage-specific marker genes (a process referred as phenotypic switching) in injured or diseased vessels13. This limitation in SMC identification has been circumvented by the development of lineage tracing7,14,15,16,17,18,19,20,21,22,23,24. It consists of permanently labelling SMC and their progeny to track their fate and phenotypic evolution during atherosclerosis progression by using a combination of the expression of Cre recombinase driven by SMC-specific promoters (i.e., Myh117,15,17,18,19,20,21,22,23,24, Acta225,26 and, SM22α14,16) and the activation of reporters (e.g., fluorescent proteins, β-galactosidase) [reviewed in Bentzon and Majesky 201827]. In one of the first studies employing SMC lineage tracing outside of embryogenesis setting, Speer et al.14 provided evidence that SMC can modulate their phenotype and transdifferentiate into chondrogenic cells during vascular calcification by using an SM22α Cre R26R LacZ lineage tracing model. Although these studies pioneered SMC lineage tracing, they were partially equivocal in that any given non-SMC expressing SM22α in the setting of the disease would be labeled by the reporter. This limitation has been bypassed by the development and use of tamoxifen-inducible Cre ERT/LoxP permitting a temporal control of cell labeling. Cell labeling occurs exclusively during tamoxifen delivery and will be restricted to the cell expressing the cell type-specific promoter driving Cre ERT expression at the time of tamoxifen exposure, avoiding tracing of alternative cell types activating Cre in the setting of disease progression. For lineage tracing of SMC in atherosclerosis, the tamoxifen-inducible Myh11-Cre/ERT2 transgene associated with fluorescent reporters (eYFP7,15,17,18,21, mTmG19,25, Confetti20,22,23 for clonal expansion studies) has demonstrated a remarkable efficiency and specificity in SMC labeling and has been used to fate map SMC populations in atherosclerotic lesions in recent studies. Importantly, these studies revealed that: 1) 80% of SMC within advanced atherosclerotic lesions do not express any conventional SMC markers (ACTA2, MYH11) used in immunohistological analysis and therefore would have been misidentified without lineage tracing17; 2) subsets of SMC express markers of alternate cell types including macrophage markers or mesenchymal stem cell markers16,17,19; and 3) SMC invest and populate the atherosclerotic lesion by oligoclonal expansion and SMC clones retain plasticity to transition to phenotypically different populations20,23. To summarize, it is now clear that smooth muscle cells present a remarkable phenotypic diversity in atherosclerotic lesions and can have beneficial or detrimental roles on lesion pathogenesis depending on the nature of their phenotypic transitions. These discoveries represent a remarkable new therapeutic avenue for targeting SMC athero-promoting phenotypic transitions in late-stage atherosclerosis.
Herein, we propose a standardized protocol for analyzing late-stage murine atherosclerotic lesions including systematic methods for animal dissection, embedding, sectioning, staining, and quantification of brachiocephalic artery lesions. To determine the effect of Interleukin-1β inhibition on SMC fate and phenotype, we used SMC lineage tracing ApoE-/- mice fed a western diet for 18 weeks before receiving weekly injections of an anti-IL1β antibody or isotype-matched IgG control.
Animal breeding, handling and procedures were approved by the University of Virginia and the University of Pittsburgh Institutional Animal Care and Use Committee.
1. Generation of SMC lineage tracing mice
2. Smooth muscle cell lineage-tracing mouse diet and treatments
3. Harvesting of the Brachiocephalic Artery (BCA)
4. Tissue processing and sectioning
5. Immunofluorescent staining
NOTE: A complete characterization of atherosclerotic lesions includes assessment of morphological parameters and indices of plaque stability or instability and cellular composition that will not be the focus of the present protocol. Lesion morphology, collagen content, and intraplaque hemorrhage can be analyzed by Movat7,17, PicroSirius Red 7,31, Ter119 staining 7,18, respectively. Here, we will describe the protocol for analyzing the cellular composition of lesions.
6. Confocal microscopy
NOTE: The use of a confocal microscope and z-stack acquisition is critical for single-cell counting.
7. Single cell counting
Myh11-Cre/ERT2 R26R-EYFP Apoe-/- mice were injected with tamoxifen between six and eight weeks of age before being fed a high fat diet. At 18 weeks of high fat diet feeding, two groups of eight mice were treated weekly with either a mouse monoclonal anti-IL-1β antibody or an isotype-matched IgG control at 10 mg/kg for 8 weeks (Figure 1)7. Mice were sacrificed and perfused with a 4% PFA-PBS solution. Brachioceph...
Despite decades of research and technical advances in studying atherosclerosis, the field has a disappointing history of translating scientific findings to clinical therapies34,35. This phenomenon may be explained in part by discrepancies in animal models, experimental designs, and lesion analyses. Herein, we describe an experimental pipeline that we used to analyze the cellular composition in advanced atherosclerotic lesions using lineage tracing mice
The authors have nothing to disclose.
We thank the Center for Biologic Imaging (supported by NIH 1S10OD019973-01) at the University of Pittsburgh for their assistance. This work was supported by is supported by Scientific Development Grant 15SDG25860021 from the American Heart Association to D.G. R.A.B. was supported by NIH grant F30 HL136188.
Name | Company | Catalog Number | Comments |
16% Paraformaldehyde aqueous solution | Electron Microscopy Sciences | RT 15710 | Tissue perfusion and fixation |
23G butterfly needle | Fisher | BD367342 | |
25G needle | Fisher | 14-821-13D | |
A1 Confocal microscope | Nikon | Confocal microscope | |
ACTA2-FITC antibody (mouse) | Sigma Aldrich | F3777 | Primary Antibody |
Alexa-647 anti goat | Invitrogen | A-21447 | Secondary antibody |
Antigen Unmasking solution, Citric acid based | Vector Labs | H-3300 | Antigen retrieval solution |
Chow Diet | Harlan Teklad | TD.7012 | |
Coverslip | Fisher | 12-544-14 | Any 50 x 24 mm cover glass |
DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) | Invitrogen | D1306 | Nucleus fluorescent counterstaining |
Donkey Alexa-488 anti-rabbit | Invitrogen | A-21206 | Secondary antibody |
Donkey Alexa-555 anti-rat | Abcam | ab150154 | Secondary antibody |
DPBS 10X without Calcium and Magnesium | Gibco | 14200166 | PBS for solution dilutions and washes. Dilute to 1x in deionized water |
Embedding cassette | Fisher | 15-182-701D | |
ETDA vacuum tube | Fisher | 02-685-2B | |
Ethanol 200 proof | Decon | 2701 | |
Foam pad | Fisher | 22-222-012 | |
Gelatin from cold water fish skin | Sigma Aldrich | G7765 | |
GFP antibody (goat) | abcam | ab6673 | Primary antibody |
goat IgG control | Vector Labs | I-5000 | IgG control |
High Fat Diet | Harlan Teklad | TD.88137 | |
ImageJ | NIH | Computer program https://imagej.nih.gov/ij/ | |
LGALS3 antibody (rat) | Cedarlane | CL8942AP | Primary antibody |
LSM700 confocal microscope | Zeiss | Confocal microscope | |
Microscope Slides, Superfrost Plus | Fisher | 12-550-15 | |
Microtome blades | Fisher | 30-538-35 | |
Mouse IgG control | Vector Labs | I-2000 | IgG control |
NIS element imaging software | Nikon | Imaging software for z-stack image acquisition | |
Normal Horse serum | Sigma Aldrich | H1270 | |
Pap Pen | Fisher | 50-550-221 | |
Peanut oil | Sigma | P2144 | |
Prolong gold Antifade mountant | Invitrogen | P36930 | Mounting medium |
Rabbit IgG control | Vector Labs | I-1000 | IgG control |
Rat IgG control | Vector Labs | I-4000 | IgG control |
RUNX2 antibody (rabbit) | Abcam | ab192256 | Primary Antibody |
Syringe | BD | 309628 | 1 ml syringe |
Tamoxifen | Sigma | T5648 | |
Xylene | Fisher | X55K-4 | |
Zen imaging software | Zeiss | Imaging software for z-stack image acquisition |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone