É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
Propomos um protocolo padronizado para caracterizar a composição celular do tarde-estágio lesões ateroscleróticas murino, incluindo métodos sistemáticos de dissecação animal, incorporação de tecido, corte, coloração e análise das artérias Braquiocefálica de ratos de rastreamento do linhagem de células de músculo liso atheroprone.
Aterosclerose continua a ser a principal causa de morte no mundo e, apesar de inúmeros estudos pré-clínicos descrevendo alvos terapêuticos promissores, intervenções romance permanecem indescritíveis. Isto é provavelmente devido, em parte, para uma dependência de modelos pré-clínicos prevenção investigando os efeitos de manipulações genéticas ou tratamentos farmacológicos sobre o desenvolvimento de aterosclerose em vez da doença estabelecida. Também, os resultados desses estudos são muitas vezes confusão devido a utilização de análises de lesão superficial e uma falta de caracterização de populações de células da lesão. Para ajudar a superar esses obstáculos translacionais, propomos um aumento da dependência em modelos de intervenção que empregam a investigação das alterações na composição celular a um nível de célula única por imunofluorescência coloração e microscopia confocal. Para este fim, descrevemos um protocolo para teste um putativo agente terapêutico em um modelo murino de intervenção, incluindo uma abordagem sistemática para dissecação animal, incorporação, corte, coloração e quantificação das lesões da artéria Braquiocefálica. Além disso, devido à diversidade fenotípica de células dentro de lesões ateroscleróticas do tarde-estágio, descrevemos a importância do uso de sistemas de rato de rastreamento de linhagem celular específica, inducible e como isso pode ser aproveitado para a caracterização imparcial da populações de células da lesão aterosclerótica. Juntos, essas estratégias podem auxiliar biólogos vasculares mais precisamente modelo intervenções terapêuticas e analisar a doença aterosclerótica e Tomara que se traduzirá em uma maior taxa de sucesso em ensaios clínicos.
A aterosclerose é a principal causa de morbidade e mortalidade subjacente em todo o mundo a maioria de doença arterial coronariana, doenças das artérias periféricas e derrame. Estágio final de aterosclerose coronariana pode levar a complicações graves, incluindo a contabilização de infração miocárdica de quase 16% da população de mundo a mortalidade1,2. Devido ao seu impacto devastador sobre a saúde pública, fez esforço substancial para decifrar os mecanismos de progressão da aterosclerose, bem como a conduzir e desenvolver novas estratégias terapêuticas. Ainda, a taxa de probabilidade de aprovação (LOA) de ensaios clínicos para a doença cardiovascular é um dos mais baixos quando comparados com outros campos clínicos (apenas 8,7% para a fase I)3. Isto pode ser explicado em parte por muitas barreiras que aterosclerose poses para o desenvolvimento de drogas eficientes, incluindo a sua natureza quase onipresente, progressão clinicamente silenciosa e heterogeneidade da doença significativa. Além disso, o design de qualidade inferior de estudos pré-clínicos em animais também pode ser contabilizado a falta de sucesso na tradução clínica. Especificamente, acreditamos que é necessário implementar estudos de intervenção, sempre que possível investigar a eficácia de estratégias terapêuticas. Além disso, há uma necessidade crítica para realizar procedimentos padronizados para análises de lesão, incluindo avançados de caracterização da composição celular do tarde-estágio de lesão aterosclerótica por fenotipagem e mapeamento de destino.
A grande maioria dos estudos de aterosclerose focar em modelos de prevenção de aterosclerose consistindo de drogas tratamento ou gene manipulação (nocaute ou bater-em) em ratos jovens saudáveis, antes do início da doença e a progressão. Estes estudos revelaram um grande número de genes e moléculas sinalizadoras que desempenham um papel no desenvolvimento de aterosclerose. No entanto, a maioria dessas metas conseguiu traduzir a terapias eficientes em humanos. Realmente, é difícil de extrapolar o efeito de que uma terapia tem em ratos jovens saudáveis para pacientes idosos com lesões ateroscleróticas avançadas. Como tal, a implementação dos estudos de intervenção no pipeline experimental pré-clínicos provável fornece uma descrição mais exata da relevância e da eficácia de uma nova terapêutica. A ideia é apoiada pelos efeitos extremamente divergentes de inibir a citocina pró-inflamatória interleucina-1 β (IL-1 β) quando empregando uma prevenção4,5,6 ou intervenção estratégia7. Diferenças entre prevenção e estudos de intervenção sugerem que diferentes processos celulares ocorrem em diferentes fases de desenvolvimento de aterosclerose e destaca o fato de que os estudos de prevenção são prováveis insuficiente para modelar o cenário clínico adequadamente.
A American Heart Association publicou recentemente uma fundamentação científica detalhando recomendações para projeto experimental apropriado, padronização de procedimento, análise e relatórios de animais aterosclerose estudos8. Ele destaca as vantagens e limitações das técnicas predominantes usadas no campo. Por exemplo, rosto pt Sudan IV coloração da aorta é frequentemente realizado como uma primeira leitura. Embora o rosto pt Sudan IV coloração de deposição de lipídios é um método adequado para a avaliação da carga global de placa, é incapaz de distinguir lesões raia gordurosos fase inicial de lesões mais avançadas do tarde-estágio. Como tal, a interpretação de manchar o rosto do pt é muitas vezes ambígua e superficial9. Análise cuidadosa do tecido seções transversais usando o tamanho de navio, lesão e lúmen de parâmetros morfológicos e quantificação dos índices de estabilidade de lesão fornece uma compreensão mais exata do efeito de uma experiência.
Finalmente, humano histopatologia estudos sugerem que a composição celular é melhor preditor de ruptura do que o tamanho da lesão em si, com lesões pobres em células musculares lisas (SMC) e ricos em macrófagos, sendo mais suscetíveis à ruptura10, 11. Estas observações foram baseadas na mancha para marcadores classicamente utilizados para a identificação da célula (isto é, ACTA2 para SMC e LGALS3 ou CD68 por macrófagos). No entanto, a expressão destes marcadores não é estritamente restrita a um único tipo de células em lesões ateroscleróticas devido a plasticidade das linhagens múltiplas incluindo SMC, células endoteliais e células mieloides12. Em particular, a identificação inequívoca do SMC dentro lesão aterosclerótica era virtualmente impossível até a última década por causa da propriedade dessas células dedifferentiate e reprimir seus genes de marcador de linhagem específica (um processo conhecido como fenotípica de comutação) em vasos feridos ou doentes13. Esta limitação na identificação de SMC foi contornada pelo desenvolvimento da linhagem rastreamento7,14,15,16,17,18, 19 , 20 , 21 , 22 , 23 , 24. consiste de rotulagem permanentemente a SMC e seus descendentes para controlar seu destino e evolução fenotípica durante a progressão da aterosclerose, usando uma combinação da expressão da Cre recombinase conduzido pelos promotores de SMC-específicos (i.e., Myh117,15,17,18,19,20,21,22,23 , E 24, Acta225,26 ,, SM22α1416) e a ativação de repórteres (por exemplo, as proteínas fluorescentes, β-galactosidase) [revisto em bentson e Majesky 201827]. Em um dos primeiros estudos empregando o rastreamento de linhagem SMC fora da configuração de embriogênese, Speer et al14 forneceu evidências que SMC pode modular seu fenótipo e transdifferentiate em células de chondrogenic durante a calcificação vascular, usando um modelo de rastreamento de linhagem do SM22α Cre R26R LacZ. Embora estes estudos pioneira em rastreamento de linhagem SMC, eram parcialmente ambíguas em que qualquer SM22α expressando determinado-o SMC no cenário da doença seria rotulado pelo repórter. Esta limitação foi desviada pelo desenvolvimento e uso de tamoxifeno-inducible Cre ERT/LoxP permitindo um controle temporal de rotulagem de célula. Rotulagem de célula ocorre exclusivamente durante o parto de tamoxifeno e devem restringir-se a célula expressar o promotor específico tipo celular dirigindo a expressão Cre ERT aquando da exposição de tamoxifeno, evitando o rastreamento de tipos alternativos de célula ativando Cre na definição de progressão da doença. Para rastreamento de linhagem de SMC em aterosclerose, o tamoxifeno-inducible Myh11- Cre/ERT2 transgene associado com repórteres fluorescentes (eYFP7,15,17,18 , 21, mTmG19,25, confete20,22,23 , para estudos de expansão clonal) tem demonstrado uma notável eficiência e especificidade na rotulagem de SMC e tem foi usado para as populações de SMC de mapa de destino em lesões ateroscleróticas em estudos recentes. Importante, estes estudos revelaram que: 1) 80% de SMC avançada dentro fazer lesões ateroscleróticas não expressam qualquer convencional SMC marcadores (ACTA2, MYH11) utilizados na análise reagidos e, portanto, que têm sido identificados incorretamente sem rastreamento de linhagem 17. o; 2) subconjuntos de SMC expressam marcadores tipos de células alternativo, incluindo os marcadores de macrófagos ou células-tronco mesenquimais marcadores16,17,19; e 3) SMC investir e preencher a lesão aterosclerótica pela expansão oligoclonais e clones SMC retêm plasticidade a transição para populações fenotipicamente diferentes20,23. Para resumir, é agora claro que células musculares lisas apresentam uma notável diversidade fenotípica em lesões ateroscleróticas e podem ter funções benéficas ou prejudiciais na patogênese da lesão dependendo da natureza de suas transições fenotípicas. Estas descobertas representam uma notável nova avenida terapêutica para o direcionamento de SMC athero-promoção fenotípicas transições no estágio final de aterosclerose.
Neste documento, propomos um protocolo padronizado para analisar o estágio final de lesões ateroscleróticas murino incluindo métodos sistemáticos para dissecação animal, incorporação, corte, coloração e quantificação das lesões da artéria Braquiocefálica. Para determinar o efeito da inibição da interleucina-1 β no destino SMC e fenótipo, usamos a linhagem SMC ApoE- / - ratos alimentados com uma dieta ocidental por 18 semanas antes de receber injeções semanais de um anticorpo anti-IL1β ou correspondência do isotipo IgG controle de rastreamento.
Procedimentos, manipulação e criação de animais foram aprovados pelo Comitê de utilização e cuidados animais institucionais da Universidade de Pittsburgh e a Universidade da Virgínia.
1. geração de ratos de rastreamento de linhagem SMC
2. músculo liso célula linhagem de rastreamento do mouse dieta e tratamentos
3. a colheita da artéria Braquiocefálica (BCA)
4. tecido transformação e seccionamento
5. imunofluorescência coloração
Nota: Uma caracterização completa de lesões ateroscleróticas inclui avaliação dos parâmetros morfológicos e índices de placa estabilidade ou instabilidade e composição celular que não será o foco do presente protocolo. Morfologia da lesão, conteúdo de colágeno e intraplaque hemorragia podem ser analisados pelo Movat7,17, PicroSirius vermelho 7,31, Ter119 coloração 7,18, respectivamente. Aqui, descrevemos o protocolo para analisar a composição celular de lesões.
6. Confocal da microscopia
Nota: O uso de um microscópio confocal e aquisição de z-pilha é essencial para a contagem de célula única.
7. única célula contando
Myh11- Cre/ERT2 R26R-EYFP Apoe- / - ratos foram injetados com tamoxifeno entre seis e oito semanas de idade, antes sendo alimentados com uma dieta de alta gordura. Com 18 semanas de alta gordura dieta alimentar, dois grupos de oito ratos foram tratados semanalmente com um anticorpo anti-IL-1 β anticorpo monoclonal de rato ou um controle de IgG isotipo-combinadas em 10 mg/kg para 8 semanas (Figura 1)7. Ratos foram s...
Apesar de décadas de pesquisa e avanços técnicos em estudar a aterosclerose, o campo tem uma história decepcionante de traduzir as descobertas científicas para terapias clínicas34,35. Este fenômeno pode ser explicado em parte por discrepâncias em modelos animais, desenhos experimentais e análises de lesão. Aqui, descrevemos um pipeline experimental que usamos para analisar a composição celular em lesões ateroscleróticas avançadas usando a linhagem ...
Os autores não têm nada para divulgar.
Agradecemos o centro biológico Imaging (suportado pelo NIH 1S10OD019973-01) da Universidade de Pittsburgh, por sua assistência. Este trabalho foi apoiado por é suportado por concessão de desenvolvimento científico 15SDG25860021 da associação americana do coração para D.G. R.A.B foi apoiada pelo NIH conceder HL136188 F30.
Name | Company | Catalog Number | Comments |
16% Paraformaldehyde aqueous solution | Electron Microscopy Sciences | RT 15710 | Tissue perfusion and fixation |
23G butterfly needle | Fisher | BD367342 | |
25G needle | Fisher | 14-821-13D | |
A1 Confocal microscope | Nikon | Confocal microscope | |
ACTA2-FITC antibody (mouse) | Sigma Aldrich | F3777 | Primary Antibody |
Alexa-647 anti goat | Invitrogen | A-21447 | Secondary antibody |
Antigen Unmasking solution, Citric acid based | Vector Labs | H-3300 | Antigen retrieval solution |
Chow Diet | Harlan Teklad | TD.7012 | |
Coverslip | Fisher | 12-544-14 | Any 50 x 24 mm cover glass |
DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) | Invitrogen | D1306 | Nucleus fluorescent counterstaining |
Donkey Alexa-488 anti-rabbit | Invitrogen | A-21206 | Secondary antibody |
Donkey Alexa-555 anti-rat | Abcam | ab150154 | Secondary antibody |
DPBS 10X without Calcium and Magnesium | Gibco | 14200166 | PBS for solution dilutions and washes. Dilute to 1x in deionized water |
Embedding cassette | Fisher | 15-182-701D | |
ETDA vacuum tube | Fisher | 02-685-2B | |
Ethanol 200 proof | Decon | 2701 | |
Foam pad | Fisher | 22-222-012 | |
Gelatin from cold water fish skin | Sigma Aldrich | G7765 | |
GFP antibody (goat) | abcam | ab6673 | Primary antibody |
goat IgG control | Vector Labs | I-5000 | IgG control |
High Fat Diet | Harlan Teklad | TD.88137 | |
ImageJ | NIH | Computer program https://imagej.nih.gov/ij/ | |
LGALS3 antibody (rat) | Cedarlane | CL8942AP | Primary antibody |
LSM700 confocal microscope | Zeiss | Confocal microscope | |
Microscope Slides, Superfrost Plus | Fisher | 12-550-15 | |
Microtome blades | Fisher | 30-538-35 | |
Mouse IgG control | Vector Labs | I-2000 | IgG control |
NIS element imaging software | Nikon | Imaging software for z-stack image acquisition | |
Normal Horse serum | Sigma Aldrich | H1270 | |
Pap Pen | Fisher | 50-550-221 | |
Peanut oil | Sigma | P2144 | |
Prolong gold Antifade mountant | Invitrogen | P36930 | Mounting medium |
Rabbit IgG control | Vector Labs | I-1000 | IgG control |
Rat IgG control | Vector Labs | I-4000 | IgG control |
RUNX2 antibody (rabbit) | Abcam | ab192256 | Primary Antibody |
Syringe | BD | 309628 | 1 ml syringe |
Tamoxifen | Sigma | T5648 | |
Xylene | Fisher | X55K-4 | |
Zen imaging software | Zeiss | Imaging software for z-stack image acquisition |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados