Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
The lacrimal gland (LG) has two cell types expressing α-smooth muscle actin (αSMA): myoepithelial cells (MECs) and pericytes. MECs are of ectodermal origin, found in many glandular tissues, while pericytes are vascular smooth muscle cells of endodermal origin. This protocol isolates MECs and pericytes from murine LGs.
The lacrimal gland (LG) is an exocrine tubuloacinar gland that secretes an aqueous layer of tear film. The LG epithelial tree is comprised of acinar, ductal epithelial, and myoepithelial cells (MECs). MECs express alpha smooth muscle actin (αSMA) and have a contractile function. They are found in multiple glandular organs and are of ectodermal origin. In addition, the LG contains SMA+ vascular smooth muscle cells of endodermal origin called pericytes: contractile cells that envelop the surface of vascular tubes. A new protocol allows us to isolate both MECs and pericytes from adult murine LGs and submandibular glands (SMGs). The protocol is based on the genetic labeling of MECs and pericytes using the SMACreErt2/+:Rosa26-TdTomatofl/fl mouse strain, followed by preparation of the LG single-cell suspension for fluorescence activated cell sorting (FACS). The protocol allows for the separation of these two cell populations of different origins based on the expression of the epithelial cell adhesion molecule (EpCAM) by MECs, whereas pericytes do not express EpCAM. Isolated cells could be used for cell cultivation or gene expression analysis.
Myoepithelial cells (MECs) are present in many exocrine glands including lacrimal, salivary, harderian, sweat, prostate, and mammary. MECs are a unique cell type that combines an epithelial and a smooth muscle phenotype. MECs express α-smooth muscle actin (SMA) and have a contractile function1,2. In addition to MECs, the lacrimal gland (LG) and the submandibular gland (SMG) contains SMA+ vascular cells called pericytes, which are cells of endodermal origin that envelop the surface of vascular tubes3. Although MECs and pericytes express many markers, SMA is the only marker that is not expressed in other LG and SMG cells1,3.
Within the last 40 years, several laboratories reported assays for dissociation of different exocrine gland tissues, in which non-enzymatic and enzymatic approaches were applied. In one of the first reports published in 1980, Fritz and coauthors described a protocol to isolate feline parotid acini using sequential digestion in a collagenase/trypsin solution4. In 1989, Hann and coauthors adjusted this protocol for acini isolation from rat LGs using a mixture of collagenase, hyaluronidase and DNase5. In 1990, Cripps and colleagues published the method of non-enzymatic dissociation of lacrimal gland acini6. Later, in 1998, Zoukhri and coauthors returned to an enzymatic dissociation protocol for following up Ca2+-imaging on LG and SMG isolated acini7. Within the last decade, researchers have turned their focus on isolation of stem/progenitor cells from exocrine glands. Pringle and coauthors described a protocol in 2011 for isolation of mouse SMG stem cells8. This method was based on isolation of stem cell-containing salispheres, which were maintained in culture. The authors claimed that proliferating cells expressing stem cell-associated markers could be isolated from these salispheres8. Shatos and coauthors published the protocol for progenitor cell isolation from uninjured adult rat LGs using enzymatic digestion and collecting “liberated” cells9. Later, in 2015, Ackermann and coauthors adjusted this procedure to isolate presumptive "murine lacrimal gland stem cells" ("mLGSCs") that could be propagated as a mono-layer culture over multiple passages10. However, none of the before mentioned procedures allowed for distinguishing cellular subtypes and individual populations of isolated epithelial cells. In 2016, Gromova and coauthors published a procedure for isolation of LG stem/progenitor cells from adult murine LGs using FACS11. However, this protocol was not intended to isolate MECs.
Recently, we have shown that we are able to isolate SMA+ cells from 3 week-old SMA-GFP mice12. However, at this time we have not separated different populations of SMA+ cells. Here we established a new procedure for the direct isolation of differentiated MECs and pericytes from adult LGs and SMGs.
All animal work was conducted according to the National Institute of Health (NIH) guidelines and was approved by Institutional Animal Care and Use Committee of the Scripps Research Institute. All efforts were made to minimize the number of mice and their suffering. All experimental animals received a standard diet with free access to tap water.
NOTE: The main steps for MEC and pericyte isolation are outlined schematically in Figure 1A-F. All reagents and equipment used for this procedure are described in Table 1.
1. Mice and Labelling the SMA cells
2. Solutions and Buffers
NOTE: The LG is an epithelial origin gland that contains an extracellular matrix that makes dissociation of cells difficult. Therefore, using a special combination of enzymes and a multistep digestion process described below is recommended.
3. Adult Mouse Lacrimal Gland Harvesting and Microdissection
4. Preparation of LG Single-cell Suspension
5. Antibody Staining
6. Fluorescence Activated Cell Sorting
Mouse model to isolate SMA+ MECs and pericytes
The established protocol allows for the isolation of two pure populations: MECs and pericytes from LGs and SMGs (see Table 1). These two types of cells have a different size and appearance. Microvascular pericytes, develop around the walls of capillaries (Figure 5A) and have a squared shape (Figure 5B), while MECs surround the LG secretory acini,...
This manuscript described a protocol of MEC and pericyte isolation from LG and SMG. This procedure was based on genetic labeling of SMA, the only reliable biomarker of MECs and pericytes.
The urgency to develop this protocol was motivated by the almost total absence of literature highlighting the isolation of MECs from murine LGs and SMGs. Although genetic labeling was previously used, using SMA-GFP mice to isolate SMA+ cells from young three-week-old LGs12, it did not ...
The authors declare no competing financial interests and no conflicts of any other interests.
We thank Dr. Ivo Kalajzic for providing us with the SMACreErt2 mouse strain, Takeshi Umazume for mouse tailing and genotyping, Mark Shelley for acquiring professional pictures for Figure 2. We also thank Scripps Council of Scientific Editors and Mark Shelley for Scientific English editing. We are grateful to The Scripps Research Institute Flow Cytometry core for assistance with cell sorting and to Dr. Robin Willenbring for multiple discussions/advice on FACS data analysis.
This work was supported by the National Institutes of Health, National Eye Institute Grants 5 R01 EY026202 and 1 R01 EY028983 to H.P.M.
Name | Company | Catalog Number | Comments |
Biosafety Cabinet | SterilCard Baker | 19669.1 | Class II type A/B3 |
10 mL Disposable serological pipets | VWR | 89130-910 | Manufactured from polystyrene and are supplied sterile and plugged |
10 mL Disposable serological pipets | VWR | 89130-908 | Manufactured from polystyrene and are supplied sterile and plugged |
15 mL High-clarity polypropylene conical tubes | Falcon | 352196 | |
25 mL Disposable serological pipets | VWR | 89130-900 | Manufactured from polystyrene and are supplied sterile and plugged |
5 mL FACS round-bottom tubes | Fisher Scientific, Falcon | 14-959-11A | |
50 mL High-clarity polypropylene conical tubes | Falcon | 352070 | |
Antibiotic-antimycotic | Invitrogen | 15240-062 | |
Appropriate filter and non-filter tips | Any available | Any available | |
BD Insulin Syringes | Becton Dickinson | 328468 | with BD Ultra-Fine needle ½ mL 8 mm 31 G |
BD Syringes 10 mL | Becton Dickinson | 309604 | Sterile |
Brilliant Violet 421 anti mouse CD326 (EpCAM) | Biolegend | 118225 | Monoclonal Antibody (G8.8) |
CaCl2 1M solution | BioVision | B1010 | sterile |
Cell culture dishes 35 mm | Corning | 430165 | Non-pyrogenic, sterile |
Collagenase Type I | Wortington | LS004194 | |
Corn oil | Any avaliable | Any avaliable | From grocery store |
Corning cell strainer size 70 μm | Sigma-Aldrich | CLS431751-50EA | |
Digital Stirrer PC-410D | Corning | Item# UX-84302-50 | |
Dispase II | Sigma-Aldrich | D4693-1G | |
Dissecting scissors, curved blunt | McKesson Argent | 487350 | Metzenbaum 5-1/2 Inch surgical grade stainless steel non-sterile finger ring handle |
DNase I | Akron Biotech, catalog number | AK37778-0050 | |
Dulbecco’s Modified Eagle’s Medium – low glucose (DMEM) | Sigma-Aldrich | D5546-500ML | with 1,000 mg/L glucose and sodium bicarbonate, without L-glutamine |
Dulbecco’s Modified Eagle’s Medium/F12 (DMEM/F12) | Millipore | DF-042-B | without HEPES, L-glutamine |
Easypet 3 pipette controller | Eppendorf | 4430000018 | with 2 membrane filters 0.45 µm, 0.1 – 100 mL |
Ethanol | Sigma-Aldrich | E7023-500ML | |
Ethylenediaminetetraacetic acid (EDTA) | Sigma-Aldrich | E6758 | |
Fisher Vortex Genie 2 | Fisher Scientific | 12-812 | |
FlowJo version 10 | Any available | Any available | |
Fluorescence binocular microscope Axioplan2 | Carl Zeiss | ID# 094207 | |
Ghost Red 780 Viability Dye | Tonbo Biosciences | 13-0865-T100 | |
GlutaMAX Supplement | ThermoFisher Scientific, Gibco | 35050061 | |
Glycerol 99% | Sigma-Aldrich | G-5516 | |
Hand tally counter | Heathrow Scientific | HEA6594 | |
Hank's Balanced Salt Solution (HBSS) | Sigma Millipore | H6648-500ML | Modified, with sodium bicarbonate, without calcium chloride, magnesium sulphate, phenol red. |
Hank's Balanced Salt Solution (HBSS) | ThermoFisher Scientific | 14025092 | With calcium, magnesium, no phenol red. |
Hausser Bright-Line Phase Hemocytometer | Fisher Scientific | 02-671-51B | 02-671-51B |
HEPES 1 M solution | ThermoFisher Scientific, Gibco | 15630-080 | Dilute 1/10 in ddH20 |
HyClone Fetal Bovine Serum (FBS) | Fisher Scientific | SH3007002E | |
Hydrochloric Acid (HCl), 5 N Volumetric Solution | JT Baker | 5618-03 | To adjust Tris buffer pH |
Innova 4230 Refrigerated Benchtop Incubator | New Brunswick Scientific | SKU#: | Shaker; 37 °C, 5% CO2 in air |
Iris scissors | Aurora Surgical | AS12-021 | Pointed tips, delicate, curved, 9 cm, ring handle |
Isoflurane Inhalation Anesthetic | Southern Anesthesia Surgical (SAS) | PIR001325-EA | |
MgCl2 1 M solution | Sigma-Aldrich | 63069-100ML | |
Microcentrifuge tubes 1.5 mL | ThermoFisher Scientific | 3451 | Clear, graduated, sterile |
Microsoft Power Point | Any available | Any available | |
NaCl powder | Sigma-Aldrich | S-3014 | |
Nalgene 25 mm Syringe Filters | Fisher Scientific | 724-2020 | |
Pen Strep | Gibco | 15140-122 | |
pH 510 series Benchtop Meter | Oakton | SKU: BZA630092 | |
Phosphate buffered saline (PBS) | ThermoFisher Scientific | 10010023 | pH 7.4 |
Pure Ethanol 200 Proof | Pharmco-Aaper | 111000200 | |
Red blood cell lysis buffer 10x | BioVision | 5831-100 | |
Roto-torque Heavy Duty Rotator | Cole Parmer | MPN: 7637-01 | |
Safe-lock round bottom Eppendorf tubes 2 mL | Eppendorf Biopur | 22600044 | PCR inhibitor, pyrogen and RNAse-free |
Scissors | Office Depot | 375667 | |
Sorting flow cytometer MoFlo Astrios EQ | Beckman Coulter | B25982 | With Summit 6.3 software |
Sorvall Legend Micro 17R Microcentrifuge | Thermo Scientific | 75002441 | All centrifugation performed at RT |
Sorvall RT7 Plus Benchtop Refrigerated Centrifuge | Thermo Scientific | ID# 21550 | RTH-750 Rotor. All centrifugation performed at RT |
Stemi SV6 stereo dissecting microscope | Carl Zeiss | 455054SV6 | With transmitted light base |
Tamoxifen | Millipore Sigma | T5648-1G | |
Trizma base powder | Sigma-Aldrich | T1503 | |
Trypan blue solution | Millipore Sigma | T8154 | |
Two Dumont tweezers #5 | World Precision Instruments | 500342 | 11 cm, Straight, 0.1 mm x 0.06 mm tips |
Upright microscope | Any available | Any available | With transmitted light base |
Vacuum filtration systems, standard line | VWR | 10040-436 | |
Variable volume micropipettes | Any available | Any available |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone