Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
The aim of this work is to design and construct a reservoir-based melt extrusion three-dimensional printer made from open-source and low-cost components for applications in the biomedical and food printing industries.
Three-dimensional (3D) printing is an increasingly popular manufacturing technique that allows highly complex objects to be fabricated with no retooling costs. This increasing popularity is partly driven by falling barriers to entry such as system set-up costs and ease of operation. The following protocol presents the design and construction of an Additive Manufacturing Melt Extrusion (ADDME) 3D printer for the fabrication of custom parts and components. ADDME has been designed with a combination of 3D-printed, laser-cut, and online-sourced components. The protocol is arranged into easy-to-follow sections, with detailed diagrams and parts lists under the headings of framing, y-axis and bed, x-axis, extrusion, electronics, and software. The performance of ADDME is evaluated through extrusion testing and 3D printing of complex objects using viscous cream, chocolate, and Pluronic F-127 (a model for bioinks). The results indicate that ADDME is a capable platform for the fabrication of materials and constructs for use in a wide range of industries. The combination of detailed diagrams and video content facilitates access to low-cost, easy-to-operate equipment for individuals interested in 3D printing of complex objects from a wide range of materials.
Additive manufacturing is a powerful manufacturing technology that has the potential to provide significant value to the industrial landscape1,2. The attractive features of additive manufacturing involve no tooling costs, high levels of customization, complex geometries, and reduced barriers to entry costs. No retooling costs allow for the rapid manufacturing of prototypes, which is desirable when trying to decrease "time to market", which is a critical aim of industries in developed nations trying to remain competitive against low-wage competitors1. High levels of customizability allow for a wide variety of products to be fabricated with complex geometries. When these factors are combined with the low costs for set-up, materials, and operator specialization, there is a clear value of additive manufacturing technologies3.
Additive manufacturing, also called 3D printing, involves layer-by-layer fabrication of an object in a computer numerical controlled (CNC) system3. Unlike traditional CNC processes such as milling, in which material is removed from a sheet or block of material, a 3D printing system adds material into the desired structure layer-by-layer.
3D printing can be facilitated through a range of methods including laser, flash, extrusion, or jetting technologies4. The specific technology employed determines the form of the raw material (i.e., powder or melt), as well as the rheological and thermal properties required for processing5. The extrusion-based 3D printing market is dominated by filament-based systems, which is due to filaments being easy to handle, process, and continuously supply large volumes of material to the extrusion head. However, this process is limited by the type of material able to be formed into filaments (mainly thermoplastics). Most materials do not exist in filament form, and the lack of modern low-cost platforms in the market represents a notable gap.
This protocol shows the construction of a reservoir-based extrusion system that allows materials to be stored in a syringe and extruded through a needle. This system is ideally suited to manufacture a wide range of materials including foods6, polymers7, and biomaterials8,9. Furthermore, reservoir-based extrusion techniques are typically less hazardous, lower in cost, and easier to operate than other 3D printing methods.
There is a growing number of university-led teams designing and releasing open-source 3D printing systems to the public. Beginning with the Fab@Home extrusion-based printer in 200710,11, researchers aimed to create a simple and cheap platform to drive rapid expansion in 3D printing technology and applications. Later in 2011, the RepRap project aimed to create a filament-based 3D printing platform designed with parts made by 3D printing, with the goal to create a self-replicating machine12. The cost of 3D printers has been dropping over the years, from $2300 USD for a Fab@Home (2006), $573 USD for a RepRap v1 (2005), and $400 USD for v2 (2011).
In previous work, we demonstrated how an off-the-self 3D printing system could be combined with a custom reservoir-based extrusion system to create complex 3D objects from chocolate13. Further design investigation has shown that considerable cost savings can be achieved compared to this prototype design.
The aim of this protocol is to provide instructions for the construction of a low-cost reservoir-based melt extrusion 3D printer. Presented here are detailed diagrams, drawings, files, and component lists to allow successfully construction and operation of a 3D printer. All components are hosted on the open-source (creative commons noncommercial) platform https://www.thingiverse.com/Addme/collections, which allows users to change or add additional features as desired. Viscous cream, chocolate, and Pluronic F-127 (a model for bioinks) are used to evaluate the performance of ADDME and demonstrate application of the ADDME 3D printer to the biomedical and food printing industries.
A laser cutter capable of cutting acrylic and a desktop 3D printer capable of printing PLA or ABS filaments are required for this protocol. A machined heating jacket and heater cartridge or silicone heater can be used to heat the material, depending on which equipment the operator has access to. All CAD files can be found at https://www.thingiverse.com/Addme/designs. For firmware and software to control the 3D printer, http://marlinfw.org/meta/download/ and https://www.repetier.com/ are provided resources, respectively. For detailed instructions about the control board, see https://reprap.org/wiki/RAMPS_1.4.
Access restricted. Please log in or start a trial to view this content.
CAUTION: There is a risk of burns caused by hot soldering irons and heating cartridges. The heating cartridge should never be powered when not secured inside of the heating jacket. There is also a risk of pinching or lacerations from the moving 3D printer axis.
1. Overview and preparation
NOTE: Figure 1A shows a computer-generated rendering of the printer and Figure 1B is a photo of the finished printer.
Figure 1: Additive manufacturing melt extrusion (ADDME) 3D printer. (A) Computer-generated rendering of the printer. (B) Photograph of a finished printer. Please click here to view a larger version of this figure.
2. Frame assembly
NOTE: The parts shown in Figure 2 are required to finish the frame assembly. The frame of the melt extrusion 3D printer is held together by a combination of 6 mm laser cut acrylic and M3 bolts and nuts (Figure 3). The bottom of the printer is further strengthened with a M10 threaded rod and nut combination.
Figure 2: Components needed to assemble the frame. Please click here to view a larger version of this figure.
Figure 3: Frame assembly. (A) Assembled frame. (B) An exploded view with labeled acrylic parts and supporting M10 threaded rods. (C) An exploded view showing how each acrylic part is connected to one another, using M3 screws and nuts to hold the frame together. (D) An exploded view showing how the threaded rod holds acrylic parts 6, 8, and 9 together with M10 nuts and washers. Please click here to view a larger version of this figure.
3. Y-axis and printing bed sub-assembly
NOTE: The parts outlined in Figure 4 are required to finish the y-axis and printing bed sub-assembly. All screws are seen in Figure 4, and tools are listed in the Table of Materials.
Figure 4: Components needed to put together the y-axis and printing bed sub-assembly. Please click here to view a larger version of this figure.
Figure 5: Additive manufacturing melt extrusion (ADDME) 3D printer. (A) Graphical rendering of the frame, y-axis, and bed. (B) Graphical rendering of the y-axis and bed. (C) Exploded view of the bed sub-assembly. (D) Labeled view showing how the y-axis connects to the back panel. (E) Zoomed-in view of the mechanical endstop. (F) Exploded view of the printing plate spring leveling system. (G) Labeled view showing how the y-axis connects to the front panel. (H) Side view graphical render of the y-axis and bed. Please click here to view a larger version of this figure.
4. X-axis sub-assembly
NOTE: The parts outlined in Figure 6 are required to finish the x-axis sub-assembly. All screws are seen in Figure 6, and tools are listed in the Table of Materials.
Figure 6: Components needed to put together the x-axis sub-assembly. Please click here to view a larger version of this figure.
Figure 7: X-axis sub assembly. (a) Graphical rendering of the frame and x-axis. (b) Graphical render of the x-axis. (c) Exploded view of the left side of the sub assembly. (d) Exploded view of the right side of the sub-assembly. (e) Labeled view showing how the x-axis connects to the top panel. (f) Labeled view showing how the x-axis connects to the electronics enclosure. Please click here to view a larger version of this figure.
5. Extrusion sub-assembly
NOTE: The extrusion sub-assembly utilizes a dual stepper motor design to ensure that a high level of accuracy is achieved through the balancing of forces on each side of the plunger. The parts outlined in Figure 8 are required to finish the extrusion sub-assembly.
Figure 8: Components needed to assemble the extruder. Please click here to view a larger version of this figure.
Figure 9: Extruder sub-assembly. (A) Graphical rendering of the extruder sub-assembly. (B) Exploded view showing extruder components. Please click here to view a larger version of this figure.
6. Electronics and wiring
Figure 10: Electronics. (A) Graphical rendering of the electronics control board mounting location. (B) Connection diagram of electrical components and motors to 3D printing board [Jos Hummelink (grabcab.com) provided the Arduino and Ramps CAD files]. (c) Image of the finished wiring. Wires can be seen leading from the Ramps board, then to the extrusion head and x/y axis motors. Please click here to view a larger version of this figure.
7. Software, control, and calibration
NOTE: For more detailed instructions and troubleshooting information, see https://reprap.org/wiki/RAMPS_1.4.
8. Preparation for 3D printing
Figure 11: 3D printing preparation. (A) A 2 mL syringe loaded with (from left to right) viscous cream (150 mL, Nivea hand cream), chocolate (Cadbury, plain milk), and Pluronic F-127 (Sigma Aldrich). (B) Plunger being inserted into the plunger lock 1 (3DP 11). (C) Shown is a syringe being inserted into the heating jacket, while the threaded screws are catching on the brass nuts. (D) Shown is an Allen key about to be inserted into the retaining M3 hex screw, allowing the level to be adjusted. (E) A business card is then slid under the syringe to check the distance between the bed and syringe. Please click here to view a larger version of this figure.
Access restricted. Please log in or start a trial to view this content.
The performance of ADDME during 3D printing was evaluated using a viscous cream (150 mL, Nivea hand cream), chocolate (Cadbury, plain milk), and Pluronic F-127 (Sigma Aldrich). The viscous cream and chocolate were used as is, and the Pluronic was dissolved into a 20% wt solution with ultrapure water and stored refrigerated at 5 °C until needed14,15.
Line testing inv...
Access restricted. Please log in or start a trial to view this content.
This protocol provides detailed instructions for constructing a low-cost melt extrusion-based 3D printer. Construction of the 3D printer can be broken down into subsections including frame, y-axis/bed, x-axis, extruder, electronics, and software. These subsections are presented with detailed diagrams, drawings, files and parts lists. The total price of an ADDME 3D printer comes to $343 AUD ($245 USD as of 01/17/2019), making this the cheapest, reservoir-based melt extrusion 3D printer currently known. It was aimed to mak...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors. Special thanks to Florian Schmittner, Sandro Gorka, Gurinder Singh, Vincent Tran, and Dominik Vu for their contribution on an earlier prototype of the design.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
15 W 12V DC 50x100mm Flexible Silicon Heater | Banggood | 1280175 | Optional; AU$4.46 |
3D Printer | Lulzbot | https://download.lulzbot.com/ | |
3D Printer | Ultimaker | Ultimaker 2+ | |
AC 100-240V to DC 12V 5A 60W Power Supply | Banggood | 994870 | AU$12.7 |
Acrylic Sheet White Continuous Cast 1200x600mm | Mulford Plastics | AU$36.95 | |
Allen Keys | Metric | ||
Arduino MEGA2560 R3 with RAMPS 1.4 Controller | Geekcreit | 984594 | AU$28.91 |
Carbon Steel Linear Shaft 8mm x 350mm | Banggood | 1119330 | AU$13.44 |
Carbon Steel linear Shaft 8mm x 500mm | Banggood | 1276011 | AU$19.42 |
Chocolate | Cadbury | ||
Computer with internet access | Dell | ||
Coupler 5-8mm | Banggood | 1070710 | AU$6.93 |
Hand Cream | Nivea | 80102 | |
Heating Cartridge | Creality 3D | 1192704 | AU$4.75 |
K Type Temperature Sensor Thermocouple | Banggood | 1212169 | AU$2.37 |
Laser Cutter | trotec | Speedy 300 | https://www.troteclaser.com/ |
M10 1mm Pitch Thread Metal Hex Nut + Washer | UXCELL | AU$8.84 | |
M10 1mm Pitch Zinc Plated Pipe 400mm Length | UXCELL | AU$11.62 | |
M2 - 0.4mm Internal Thread Brass Inserts | Ebay | AU$5.65 | |
M2 Nuts | Suleve | 1239291 | AU$9.17 |
M2 x 10 mm Button Hex Screws | Suleve | 1239291 | AU$9.17 |
M2 x 5mm Button Hex Screws | Suleve | 1239291 | AU$9.17 |
M3 - 0.5mm Internal Thread Brass Inserts | Suleve | 1262071 | AU$7.5 |
M3 Nuts | Suleve | 1109208 | AU$7.85 |
M3 Washer | Banggood | 1064061 | AU$3.05 |
M3 x 10mm Button Hex Screws | Suleve | 1109208 | AU$7.85 |
M3 x 20mm Button Hex Screws | Suleve | 1109208 | AU$7.85 |
M3 x 6mm Button Hex Screws | Suleve | 1109208 | AU$7.85 |
M3 x 8mm Button Hex Screws | Suleve | 1109208 | AU$7.85 |
M4 x 8mm Button Hex Screws | Suleve | 1273210 | AU$4.32 |
Needle Luer Lock 18 - 27 Gauge | Terumo | TGA ARTG ID: 130227 | AU$3.57 |
NEMA 17 Stepper Motor | Casun | 42SHD0001-24B | AU$54 |
NEMA Stepper Motor Mounting Bracket | Banggood | ptNema17br90 | AU$4.79 |
Pillow Block Flange Bearing 8mm | Banggood | KFL08 | AU$5.04 |
PLA Filament | Creality 3D | 1290153 | AU$24.95 |
Pluronic F127 | Sigma Aldrich | P2443-250G | |
SC8UU 8mm Linear Motion Ball Bearing | Toolcool | 935967 | AU$21.6 |
SG-5GL Micro Limit Switch | Omron | 1225333 | AU$4.5 |
Soldering Station | Solder, Wires, Heat shrink e.c.t. | ||
Spring | Banggood | 995375 | AU$2.53 |
Syringe 3ml Luer Lock Polypropylene | Brauhn | 9202618N | AU$3.14 |
Timing Pulley GT2 20 Teeth and Belt Set | Banggood | 10811303 | AU$11.48 |
Trapezoidal Lead Screw and Nut 8mm x 400mm | Banggood | 1095315 | AU$29.02 |
Variable Spanner |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone