Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here, we present a protocol for immunophenotypic characterization and cytokine induced differentiation of cord blood derived CD34+ hematopoietic stem and progenitor cells to the four myeloid lineages. The applications of this protocol include investigations on the effect of myeloid disease mutations or small molecules on myeloid differentiation of the CD34+ cells.
Ex vivo differentiation of human hematopoietic stem cells is a widely used model for studying hematopoiesis. The protocol described here is for cytokine induced differentiation of CD34+ hematopoietic stem and progenitor cells to the four myeloid lineage cells. CD34+ cells are isolated from human umbilical cord blood and co-cultured with MS-5 stromal cells in the presence of cytokines. Immunophenotypic characterization of the stem and progenitor cells, and the differentiated myeloid lineage cells are described. Using this protocol, CD34+ cells may be incubated with small molecules or transduced with lentiviruses to express myeloid disease mutations to investigate their impact on myeloid differentiation.
Normal differentiation of hematopoietic stem cells (HSCs) is critical for maintenance of physiological levels of all blood cell lineages. During differentiation, in a coordinated response to extracellular cues including growth factors and cytokines, HSCs first give rise to multipotent progenitor (MPP) cells that have lympho-myeloid potential1,2,3,4 (Figure 1). MPPs give rise to common myeloid progenitors (CMPs) and common lymphoid progenitors (CLPs) that are lineage-restricted. CLPs differentiate into the lymphoid lineages comprised of B, T, and natural killer cells. CMPs generate the myeloid lineages through two more restricted progenitor populations, megakaryocyte erythroid progenitors (MEPs), and granulocyte monocyte progenitors (GMPs). MEPs give rise to megakaryocytes and erythrocytes, whereas GMPs give rise to granulocytes and monocytes. In addition to arising through CMPs, megakaryocytes have been reported to also arise directly from HSCs or early MPPs via non-canonical pathways5,6.
Hematopoietic stem and progenitor cells (HSPCs) are characterized by the surface marker CD34 and the lack of lineage specific markers (Lin-). Other surface markers that are commonly employed to distinguish HSCs and myeloid progenitor populations include CD38, CD45RA, and CD1232 (Figure 1). HSCs and MPPs are Lin-/CD34+/CD38- and Lin-/CD34+/CD38+, respectively. Myeloid committed progenitor populations are distinguished by the presence or absence of CD45RA and CD123. CMPs are Lin-/CD34+/CD38+/CD45RA-/CD123lo, GMPs are Lin-/CD34+/CD38+/CD45RA+/CD123lo, and MEPs are Lin-/CD34+/CD38+/CD45RA-/CD123-.
The total population of CD34+ stem and progenitor cells can be obtained from human umbilical cord blood (UCB), bone marrow, and peripheral blood. CD34+ cells constitute 0.02% to 1.46% of total mononuclear cells (MNCs) in human UCB, whereas their percentage varies between 0.5% and 5.3% in bone marrow and is much lower at ~0.01% in peripheral blood7,8,9. The proliferative capacity and differentiation potential of UCB derived CD34+ cells is significantly higher than that of bone marrow or peripheral blood cells1,10, thereby offering a distinct advantage for obtaining sufficient material for molecular analyses in combination with performing immunophenotypic and morphological characterization of the cells during differentiation.
Ex vivo differentiation of umbilical cord blood derived CD34+ HSPCs is a widely applied model for investigating normal hematopoiesis and hematopoietic disease mechanisms. When cultured with the appropriate cytokines, the UCB CD34+ HSPCs can be induced to differentiate along the myeloid or lymphoid lineages11,12,13,14,15,16. Here, we describe protocols for isolation and immunophenotypic characterization of the CD34+ HSPCs from human UCB, and for their differentiation to myeloid lineage cells. This culture system is based on cytokine-induced differentiation of HSPCs in the presence of MS-5 stromal cells to mimic the microenvironment in bone marrow. The culture conditions cause an initial expansion of the CD34+ cells, followed by their differentiation to cells that express markers for the four myeloid lineage cells, namely granulocytes (CD66b), monocytes (CD14), megakaryocytes (CD41), and erythrocytes (CD235a). Applications of the CD34+ cell differentiation protocol include studies on molecular mechanisms regulating hematopoiesis, and investigations of the impact of myeloid disease associated mutations and small molecules on self-renewal and differentiation of HSPCs.
Human umbilical cord blood for experimentation was donated by healthy individuals after informed consent to Maricopa Integrated Health Systems (MIHS), Phoenix. The deidentified units were obtained through a Material Transfer Agreement between MIHS and the University of Arizona.
1. Reagents and Buffers
NOTE: Prepare all reagents and buffers under sterile conditions in a biological safety cabinet.
2. Isolation of Mononuclear Cells from Umbilical Cord Blood
NOTE: For the protocol described below, cord blood volumes of 90 to 100 mL were used. The isolation of CD34+ cells must be performed under sterile conditions in a biological safety cabinet.
3. Isolation of CD34+ Cells from Mononuclear Cells
4. Determination of Stem and Progenitor Populations by Flow Cytometry
5. Myeloid Differentiation of the CD34+ Hematopoietic Stem and Progenitor Cells
NOTE: To differentiate the CD34+ HSPCs to the myeloid lineage cells, they are first stimulated in recombinant human fibronectin fragment coated plates and then seeded on a layer of MS-5 stromal cells in myeloid differentiation medium. Differentiation may be monitored each week for 3 weeks based on expression of cell surface markers specific to the four myeloid lineages. During stimulation and differentiation, all incubations are performed at 37 °C and 5% CO2 in a humidified chamber. All steps should be performed in a biological safety cabinet.
6. Assessment of Cellular Morphology
Application of the above protocols yields 5.6 (± 0.5) x 108 MNCs and 1 (± 0.3) x 106 CD34+ cells from a cord blood unit of ~100 mL. The percentage of total CD34+ cells ranges between 80-90% (Figure 2A,B). Immunophenotypic analysis by the scheme described by Manz et al.5 demonstrates that the CD34+ cells typically consist of ~20% HSCs and ~72% MPPs that are Lin-/CD34+
The protocol described here is suitable for ex vivo differentiation of UCB derived CD34+ HSPCs to the four myeloid lineages. Initial incubation with a cytokine mix consisting of SCF, TPO, Flt3L and IL3 stimulates the CD34+ cells. Subsequently, differentiation is achieved with a cocktail of SCF, IL3, Flt3L, EPO, and TPO. In this mix, SCF, IL3, and Flt3L are important for survival and proliferation of CD34+ HSCs. EPO and TPO promote differentiation toward erythrocytes and megakaryocytes, re...
The authors have nothing to disclose.
The authors would like to thank Wendy Barrett, Rachel Caballero, and Gabriella Ruiz of Maricopa Integrated Health Systems for the de-identified and donated cord blood units, Mrinalini Kala for assistance with flow cytometry, and Gay Crooks and Christopher Seet for advice on ex vivo myeloid differentiation. This work was supported by funds to S.S. from the National Institutes of Health (R21CA170786 and R01GM127464) and the American Cancer Society (the Institutional Research Grant 74-001-34-IRG). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Name | Company | Catalog Number | Comments |
0.4% Trypan blue solution | Thermo Fisher Scientific | 15250-061 | Dilute working stock to 0.2% in sterile 1x PBS |
0.5 M UltraPure Ethylene diamine tetra acetic acid, pH 8.0 | Gibco | 15575-038 | |
10x Hanks Balanced Salt Solution (HBSS) | Invitrogen | 14185052 | Dilute to 1x with sterile distilled water & pH to 7.2 |
2.5% Trypsin, no phenol red | Thermo Fisher Scientific | 15090046 | Dilute working stock to 1x with sterile 1x PBS |
30 µm Pre-separation filters | Miltenyi biotech | 130-041-407 | |
35% sterile Bovine serum albumin | Sigma-Aldrich | A7979 | |
7-AAD | Biolegend | 420404 | Used as a live/dead stain to eliminate dead cells from FACS analysis |
Anti-human CD10-FITC antibody (Clone HI10a) | Biolegend | 312207 | Use 1:20 dilution |
Anti-human CD11b-FITC (activated) antibody (Clone CBRM1/5) | Biolegend | 301403 | Use 1:5 dilution |
Anti-human CD123-APC antibody (Clone 6H6) | Biolegend | 306012 | Use 1:20 dilution |
Anti-human CD14-PE antibody (Clone M5E2) | Biolegend | 301806 | Use 1:20 dilution |
Anti-human CD19-FITC antibody (Clone 4G7) | BD Biosciences | 347543 | Use 1:5 dilution |
Anti-human CD235a-APC antibody (Clone GA-R2 (HIR2)) | BD Biosciences | 551336 | Use 1:20 dilution |
Anti-human CD235a-FITC antibody (Clone HIR2) | Biolegend | 306609 | Use 1:50 dilution |
Anti-human CD34-APC-Cy7 antibody (Clone 581) | Biolegend | 343514 | Use 1:20 dilution |
Anti-human CD38-PE antibody (Clone HIT2) | Biolegend | 303506 | Use 1:20 dilution |
Anti-human CD3-FITC antibody (Clone UCHT1) | Biolegend | 300405 | Use 1:20 dilution |
Anti-human CD41a-PerCP-Cy5.5 antibody (Clone HIP8) | Biolegend | 303720 | Use 1:20 dilution |
Anti-human CD45Ra-PE-Cy7 antibody (Clone HI100) | Biolegend | 304126 | Use 1:20 dilution |
Anti-human CD66b-PE-Cy7 antibody (Clone G10F5) | Biolegend | 305116 | Use 1:20 dilution |
Anti-human CD7-FITC antibody (Clone CD7-6B7) | Biolegend | 343103 | Use 1:20 dilution |
Dimethyl sulfoxide (DMSO) | Fisher Scientific | BP231-100 | Filter sterilize before use |
Dulbecco’s Modified Eagle Medium (DMEM) powder with L-Glutamine | Gibco | 12100046 | Reconstitute 1 packet to make 1 L of DMEM media with sodium bicarbonate, 10% FBS & 1% penicillin & streptomycin |
Fetal bovine serum, Australian source, heat inactivated | Omega Scientific | FB-22 Lot #609716 | |
Human CD34 microbead kit | Miltenyi biotech | 130-046-702 | |
Human Thrombopoietin (TPO), research grade | Miltenyi biotech | 130-094-011 | Make a stock of 100 µg/mL in 1x PBS + 0.1% BSA. Use 50 ng/mL for both myeloid differentiation & stimulation medium |
L-Glutamine | Omega Scientific | GS-60 | 2 mM concentration in stimulation medium |
LS Columns | Miltenyi biotech | 130-042-401 | |
MACS Multi stand | Miltenyi biotech | 130-042-303 | |
MidiMACS magnetic separator | Miltenyi biotech | 130-042-302 | |
MNC fractionation media (Ficol-Paque PLUS) | GE Healthcare Biosciences | 17-1440-03 | |
MS-5 cells | Gift from the laboratory of Gay Crooks, UCLA | ||
Paraformaldehyde | Sigma-Aldrich | P6148 | Heat 800 mL of 1x PBS in a glass beaker on a stir plate in a chemical hood to ~65 °C. Add 10 g of paraformaldehyde powder. To completely dissolve the paraformaldehyde, raise the pH by adding 1 N NaOH. Cool and filter the solution and make up the volume to 1 L with 1x PBS. Adjust the pH to 7.2. |
Penicillin & Streptomycin | Sigma-Aldrich | P4458-100ml | |
Poly-L lysine | Sigma-Aldrich | P2636 | Make a 10 mg/mL stock in 1x PBS |
Recombinant human erythropoietin-alpha (rHu EPO-α) | BioBasic | RC213-15 | Make a stock of 2,000 units/mL in 1x PBS + 0.1% BSA. Use 4 units/mL for myeloid differentiation |
Recombinant human fibronectin fragment (RetroNectin) | Takara | T100B | Use 20 µg/mL diluted in sterile 1x PBS to coat wells prior to stimulation of CD34+ HSCs. |
Recombinant human Flt-3 ligand (rHu Flt-3L) | BioBasic | RC214-16 | Make a stock of 100 µg/mL in 1x PBS + 0.1% BSA. Use 5 ng/mL for myeloid differentiation & 50 ng/mL in stimulation medium |
Recombinant human interleukin-3 (rHu IL-3) | BioBasic | RC212-14 | Make a stock of 100 µg/mL in 1x PBS + 0.1% BSA. Use 5 ng/mL for myeloid differentiation & 20 ng/mL in stimulation medium |
Recombinant human stem cell factor (rHu SCF) | BioBasic | RC213-12 | Make a stock of 100 µg/mL in 1x PBS + 0.1% BSA. Use 5 ng/mL for myeloid differentiation & 50 ng/mL in stimulation medium |
Serum free medium (X-Vivo-15) | Lonza | 04-418Q | |
Sodium bicarbonate | Fisher Scientific | BP328-500 | |
Wright-Giemsa stain, modified | Sigma-Aldrich | WG16-500 | Use according to manufacturer's instructions |
Equipment | |||
BD LSR II flow cytometer | BD Biosciences | ||
Centrifuge | Sorvall Legend RT | ||
Light microscope | Olympus |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone