JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

Presented here is an optimized protocol for isolating, culturing, transfecting, and differentiating human primary monocytes from HIV-infected individuals and healthy controls.

Streszczenie

Human immunodeficiency virus (HIV) remains a major health concern despite the introduction of combined antiretroviral therapy (cART) in the mid-1990s. While antiretroviral therapy efficiently lowers systemic viral load and restores normal CD4+ T cell counts, it does not reconstitute a completely functional immune system. A dysfunctional immune system in HIV-infected individuals undergoing cART may be characterized by immune activation, early aging of immune cells, or persistent inflammation. These conditions, along with comorbid factors associated with HIV infection, add complexity to the disease, which cannot be easily reproduced in cellular and animal models. To investigate the molecular events underlying immune dysfunction in these patients, a system to culture and manipulate human primary monocytes in vitro is presented here. Specifically, the protocol allows for the culture and transfection of primary CD14+ monocytes obtained from HIV-infected individuals undergoing cART as well as from HIV-negative controls. The method involves isolation, culture, and transfection of monocytes and monocyte-derived macrophages. While commercially available kits and reagents are employed, the protocol provides important tips and optimized conditions for successful adherence and transfection of monocytes with miRNA mimics and inhibitors as well as with siRNAs.

Wprowadzenie

Human immunodeficiency virus-1 (HIV-1) infection causes severe immune dysfunction, which can lead to opportunistic infections and acquired immunodeficiency syndrome (AIDS). Although HIV-infected patients undergoing cART are characterized by low viral loads and normal CD4+ T cell counts, functioning of the immune system can be compromised in these individuals, leading to a dysfunctional immune response that has been linked to an increased risk of developing cancer1. The mechanisms of immune dysfunction in HIV patients on cART remain largely unknown. Therefore, characterizing patient-derived immune cells and investigating their biology and function is a critical component of current HIV research.

Monocytes and macrophages are key regulators of immune responses and play fundamental roles in HIV infection2,3,4,5. Heterogeneous and plastic in nature, macrophages can be broadly classified into classically activated (M1) or alternatively activated (M2). While this general classification is necessary when setting up experimental conditions, the polarization status of macrophages may be reversed by a variety of cytokines6,7,8,9. Although several studies have investigated the effects of HIV infection on monocytes and dendritic cells, molecular details of monocyte-mediated responses are largely unknown6,7,10,11,12,13,14,15,16,17,18,19. Among the factors involved in immune cell regulation and function, microRNAs (miRNAs), short non-coding RNAs that post-transcriptionally regulate gene expression, have been shown to play an important role in the context of major cellular pathways (i.e., growth, differentiation, development, and apoptosis)20. These molecules have been described as important regulators of transcription factors essential for dictating the functional polarization of macrophages21. The potential role of miRNAs in monocytes from HIV-infected individuals undergoing cART has been investigated, but progress in the field requires much more work22,23,24,25,26. This paper discusses an optimized method to transfect miRNAs and siRNAs into primary human monocytes from HIV-infected patients and controls.

This protocol relies on commercially available reagents and kits, as continuity in the technical procedure helps eliminate unnecessary experimental variables when working with clinical samples. Nonetheless, the method provides important tips (i.e., the number of cells plated or brief incubation with serum-free media to promote the adherence of cells to the plate). Additionally, the polarization conditions used in this protocol are derived from published work27,28,29.

Protokół

All methods described below have been approved by the Louisiana State University Health Sciences Center New Orleans Institutional Review Board. All blood was collected after obtaining informed consent.

NOTE: The entire procedure is performed under sterile conditions in a biosafety level 2 (BSL2) facility so that caution is used to handle biological materials. In particular, each step is performed using sterile techniques under a biosafety cabinet. After each step involving blood, blood products, cells, or cell product pipetting, it is important to rinse all plastic material (i.e., serological pipettes, pipette tips, and tubes) with 10% bleach from a waste container inside the hood prior to proper disposal.

1. Isolation of primary human monocytes by immunomagnetic negative selection

  1. Collect 40 mL of fresh, human whole blood (from either an HIV+ patient or healthy control) in four 10 mL ethylenediaminetetraacetic acid (EDTA) vacuum tubes (10 mL of blood per tube). Using sterile techniques under a biosafety cabinet, transfer all 40 mL of blood into one 50 mL conical propylene tube.
  2. Following the manufacturer's protocol for the selected human monocyte isolation kit (Table of Materials), add 2 mL of monocyte isolation cocktail, provided in the kit, to the tube of blood. Vortex magnetic beads, also provided in the kit, for 30 s, and add 2 mL to the tube of blood.
    1. If less than 40 mL of blood is available, scale down the reagents added. To mix the solution, pipette up and down with a plastic 25 mL serological pipette and incubate for 5 min at room temperature (RT).
  3. Separate the blood mixture equally into four 50 mL tubes and add 30 mL of sterile phosphate-buffered saline (PBS) containing 1 mM EDTA to each tube. Mix by pipetting up and down with a plastic 25 mL serological pipette.
  4. Place the tubes in magnet holders for 10 min to remove the antibody-conjugated magnetic beads. Use four magnet holders simultaneously, one for each tube, to allow consistent incubation and isolation times for each blood sample.
  5. Draw up the contents from the center of each tube, using a pipette, while they are still in the magnet holders. Be careful not to draw up red blood cells (no more than 10% of the 10 mL starting volume), and place the contents into one of four new 50 mL tubes.
  6. Add 500 µL of vortexed magnetic beads to each 50 mL tube. Pipette up and down with a 25 mL pipette and incubate at RT for 5 min. Then, place the tubes into magnet holders for 5 min.
  7. Carefully transfer the contents from the center of each tube while still in magnet holders into one of four new 50 mL tubes. Directly place each new 50 mL tube in the magnet holders for 5 min.
  8. Carefully transfer contents from the center of each tube into one of four new 50 mL tubes. Spin all new 50 mL tubes at 300 x g for 5 min. Aspirate the supernatant and resuspend all four cell pellets in a total of 10 mL of sterile PBS.
  9. Count cells by trypan blue exclusion using a hemocytometer.
    NOTE: 8-20 x 106 cells are generally obtained from 40 mL of whole blood.

2. Culturing of primary human monocytes

  1. Using a 37 °C water bath, warm serum-free RPMI 1640 media supplemented with 1% penicillin-streptomycin (pen/strep), and (while continuing to use sterile techniques under a biosafety cabinet) resuspend the isolated monocytes in this media at a concentration of 1 x 106 cells/mL.
  2. Add 1 mL of resuspended cells to each well of a 6 well plate or into a 35 mm dish (the final number of cells should be 1 x 106 cells/plate), and place in a 37 °C incubator with 5% CO2. Wait 0.5-1.0 h for cells to adhere.
  3. Using a 37 °C water bath, warm heat-inactivated (HI) fetal bovine serum (FBS). Add 100 µL (10% final concentration) of FBS to each plate. Add growth factors to the cells to promote macrophage differentiation.
    1. Prime macrophages for an M1-like phenotype by adding 25 ng/mL of granulocyte-macrophage colony-stimulating factor (GM-CSF) to media. Prime macrophages for an M2-like phenotype by adding 50 ng/mL of macrophage colony-stimulating factor (M-CSF) to media28.
      NOTE: Both GM-CSF and M-CSF allow monocyte differentiation to a general macrophage phenotype (M0) while priming cells for M1 or M2, respectively7,28,30.

3. Transfecting primary human monocytes in culture

  1. Transfect monocytes with miRNA mimics or inhibitors or siRNA using a kit containing a polymer-based transfection reagent (Table of Materials).
    1. Following the manufacturer's protocol for the transfection kit (and continuing the use of sterile techniques under a biosafety cabinet), first dilute the selected miRNA mimics/inhibitors or siRNAs in the buffer to a final concentration of 1.83 µM. Prepare 10 µL of diluted mimic/inhibitor per transfection of 1 x 106 cells.
  2. Prepare the transfection reagent by adding 1 µL of the provided polymer to a fresh 1.5 mL microcentrifuge tube, followed immediately by adding 90 µL of provided buffer (for a total of 91 µL of reagent per transfection). Vortex for 3-5 s.
  3. Pipette 90 µL of transfection solution into the tube containing 10 µL of diluted miRNA mimic/inhibitor or siRNA. Mix by gentle pipetting and incubate for 15 min at RT.
  4. Add 100 µL of transfection complex to one well (or dish) of 1 x 106 plated monocytes. Incubate cells for 4 h at 37 °C, then replace the medium with 3 mL of complete media (RPMI 1640 supplemented with 1% penicillin-streptomycin and 10% heat-inactivated FBS) containing either GM-CSF or M-CSF.

4. M1/M2 differentiation and activation

  1. Monocytes immediately begin differentiating to broad M0 macrophages upon plating in culture. On the third day after plating, continue the using sterile techniques under a biosafety cabinet and replace media with 3 mL of fresh RMPI 1640 media (supplemented with 1% penicillin-streptomycin, 10% heat-inactivated FBS, and either 25 ng/mL GM-CSF to promote M1-like polarization or 50 ng/mL M-CSF to promote M2-like polarization). Culture the cells in these conditions for a total of 6 days from initial plating in an incubator at 37 °C, 5% CO2.
  2. To advance polarization of primed cells to the M1-macrophage phenotype, activate cells on day 6 of incubation by replacing cell media with new media containing 5% heat-inactivated FBS, 1% pen/strep, 100 ng/mL E. coli-derived lipopolysaccharide (LPS), and 20 ng/mL interferon gamma (IFN-γ).
  3. To advance polarization of primed cells to the M2-macrophage phenotype, activate cells on day 6 of incubation by replacing cell media with new media containing 5% heat-inactivated FBS, 1% pen/strep, 10 ng/mL M-CSF, and 20 ng/mL interleukin 4 (IL-4).
  4. After 24 h, harvest the cells for RNA, protein, or flow cytometry analyses.
    1. When cells are ready for collection, wash cells in the dish 2x with PBS (at RT for RNA extraction or chilled on ice for protein extraction). Because the differentiated macrophages are now firmly attached to the plates, lyse the cells in plates directly to obtain material for RNA and protein analyses.
    2. For collection of material for flow cytometry, add PBS containing 2 mM EDTA to the dish, incubate the cells for 10 min at 37 °C, gently scrape the cells from the dish, and collect the contents in a 1.5 mL microcentrifuge tube before proceeding with standard protocols.

5. Flow cytometry

  1. Rinse cells in PBS to remove the culturing medium. Spin down 100,000 cells (per each flow cytometry condition) and resuspend the pellet in 100 µL of PBS containing 2 µL of HuFcR binding inhibitor. Incubate at RT for 15 min.
  2. Add 50 µL of staining buffer and the desired antibodies (here, CD80, CD83, CD163, and CD209 were used) in the recommended amounts.
  3. Mix gently and incubate at 4 °C in the dark for 30 min.
  4. Wash 2x with PBS and resuspend the stained cells in 150 µL of PBS before running the sample on a cytofluorimeter.

Wyniki

Using the procedure described, primary human monocytes from HIV-infected individuals and healthy donors were isolated. All data presented here were obtained from HIV+ subjects undergoing cART with low (<20 copies/mL) or undetectable viral loads and normal CD4+ T cell counts. Immediately after isolation, cells were stained, and flow cytometry was performed to confirm the purity of cell populations. Results showed that >97% of cells stained positive for CD14 (d...

Dyskusje

The presented protocol demonstrates the use of primary cells from HIV-infected subjects as a model for studying monocytes and macrophages. HIV+ patients undergoing cART live with infection for multiple years and can also have other co-infections related a compromised immune system. To study immunomodulation in the presence of HIV chronic infection, cells were harvested from patients directly. As miRNAs have been shown to play major roles in cell development and differentiation, the protocol focuses on the abil...

Ujawnienia

The authors have nothing to disclose.

Podziękowania

The authors would like to thank the HIV Clinical/Tumor Biorepository Core for providing patient samples and the Cellular Immunology Metabolism Core for providing flow cytometry analysis. This project was funded by NIH P20GM121288 and P30GM114732.

Materiały

NameCompanyCatalog NumberComments
0.5M EDTAInvitrogenAM9260G
BD Vacutainer Plastic Blood Collection Tubes with K2EDTABD Biosciences366643
Brilliant Stain BufferBD Horizon563794Flow cytometry
CD14 PerCPInvitrogen46-0149-42Flow cytometry- conjugated antibody
CD163 BV711BD Horizon563889Flow cytometry- conjugated antibody
CD209 BV421BD Horizon564127Flow cytometry- conjugated antibody
CD80 FITCBD Horizon557226Flow cytometry- conjugated antibody
CD83 APCBD Horizon551073Flow cytometry- conjugated antibody
Easy 50 EasySep MagnetStemCell Technologies18002
Easy Sep Direct Human Monocyte Isolation KitStemCell Technologies19669
EIF4EBP1 mAbCell Signaling9644Monoclonal antibody for Western blot
EIF4EBP1 siRNASanta Cruzsc-29594
Fetal Bovin Serum Defined Heat InactivatedHycloneSH30070.03HI
Gallios Flow CytometerBeckman CoulterB43618
GAPDH mAbSanta CruzSC-47724Monoclonal antibody for Western blot
HuFcR Binding InhibitoreBiosciences14-9161-73Flow cytometry- blocking buffer
Kaluza Analysis SoftwareBeckman CoulterB16406Software to analyze flow cytometry data
Lipopolysaccharides from Escherichia coli O55:B5SigmaL4524
miRCURY LNA microRNA Mimic hsa-miR-146a-5pQiagenYM00472124
MISSION miRNA Negative ControlSigmaHMC0002Scrambled miRNA conjugated with a near infrared dye
Nunc 35mm Cell Culture DishThermo Scientific150318
PBSGibco20012027
Penicillin-StreptomycinGibco15140122
Recombinant Human GM-CSFR&D Systems215-GM-050
Recombinant Human IFN-γR&D Systems285-IF-100
Recombinant Human IL-4R&D Systems204-IL-010
Recombinant Human M-CSFR&D Systems216-MC-025
RPMI 1640 with L-GlutamineCorning10040CVMP
Scrambled Control siRNASanta Cruzsc-37007
Viromer Blue Transfection Reagent KitLipocalyxVB-01LB-01
WST-1 Cell Proliferation ReagentRoche5015944001Colorimetric assay to assess cell viability

Odniesienia

  1. Slim, J., Saling, C. F. A Review of Management of Inflammation in the HIV Population. Biomedical Research International. 2016, 3420638 (2016).
  2. Herskovitz, J., Gendelman, H. E. HIV and the Macrophage: From Cell Reservoirs to Drug Delivery to Viral Eradication. Journal of Neuroimmune Pharmacology. 14 (1), 52-67 (2019).
  3. Machado Andrade, V., Stevenson, M. Host and Viral Factors Influencing Interplay between the Macrophage and HIV-1. Journal of Neuroimmune Pharmacology. 14 (1), 33-43 (2019).
  4. Merino, K. M., Allers, C., Didier, E. S., Kuroda, M. J. Role of Monocyte/Macrophages during HIV/SIV Infection in Adult and Pediatric Acquired Immune Deficiency Syndrome. Frontiers in Immunology. 8, 1693 (2017).
  5. Wacleche, V. S., Tremblay, C. L., Routy, J. P., Ancuta, P. The Biology of Monocytes and Dendritic Cells: Contribution to HIV Pathogenesis. Viruses. 10 (2), (2018).
  6. Davis, M. J., et al. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. MBio. 4 (3), e00264 (2013).
  7. Raggi, F., et al. Regulation of Human Macrophage M1-M2 Polarization Balance by Hypoxia and the Triggering Receptor Expressed on Myeloid Cells-1. Frontiers in Immunology. 8, 1097 (2017).
  8. Van Overmeire, E., et al. M-CSF and GM-CSF Receptor Signaling Differentially Regulate Monocyte Maturation and Macrophage Polarization in the Tumor Microenvironment. Cancer Research. 76 (1), 35-42 (2016).
  9. Vogel, D. Y., et al. Human macrophage polarization in vitro: maturation and activation methods compared. Immunobiology. 219 (9), 695-703 (2014).
  10. Almeida, M., Cordero, M., Almeida, J., Orfao, A. Different subsets of peripheral blood dendritic cells show distinct phenotypic and functional abnormalities in HIV-1 infection. AIDS. 19 (3), 261-271 (2005).
  11. Ciesek, S., et al. Impaired TRAIL-dependent cytotoxicity of CD1c-positive dendritic cells in chronic hepatitis C virus infection. Journal of Viral Hepatitis. 15 (3), 200-211 (2008).
  12. Granelli-Piperno, A., Golebiowska, A., Trumpfheller, C., Siegal, F. P., Steinman, R. M. HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proceedings of the National Academy of Sciences of the United States of America. 101 (20), 7669-7674 (2004).
  13. Hearps, A. C., et al. HIV infection induces age-related changes to monocytes and innate immune activation in young men that persist despite combination antiretroviral therapy. AIDS. 26 (7), 843-853 (2012).
  14. Heggelund, L., et al. Stimulation of toll-like receptor 2 in mononuclear cells from HIV-infected patients induces chemokine responses: possible pathogenic consequences. Clinical and Experimental Immunology. 138 (1), 116-121 (2004).
  15. Hernandez, J. C., et al. Up-regulation of TLR2 and TLR4 in dendritic cells in response to HIV type 1 and coinfection with opportunistic pathogens. AIDS Research and Human Retroviruses. 27 (10), 1099-1109 (2011).
  16. Hernandez, J. C., Latz, E., Urcuqui-Inchima, S. HIV-1 induces the first signal to activate the NLRP3 inflammasome in monocyte-derived macrophages. Intervirology. 57 (1), 36-42 (2014).
  17. Low, H. Z., et al. TLR8 regulation of LILRA3 in monocytes is abrogated in human immunodeficiency virus infection and correlates to CD4 counts and virus loads. Retrovirology. 13, 15 (2016).
  18. Sachdeva, M., Sharma, A., Arora, S. K. Functional Impairment of Myeloid Dendritic Cells during Advanced Stage of HIV-1 Infection: Role of Factors Regulating Cytokine Signaling. PLoS ONE. 10 (10), e0140852 (2015).
  19. Sachdeva, M., Sharma, A., Arora, S. K. Increased expression of negative regulators of cytokine signaling during chronic HIV disease cause functionally exhausted state of dendritic cells. Cytokine. 91, 118-123 (2017).
  20. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116 (2), 281-297 (2004).
  21. Li, H., Jiang, T., Li, M. Q., Zheng, X. L., Zhao, G. J. Transcriptional Regulation of Macrophages Polarization by MicroRNAs. Frontiers in Immunology. 9, 1175 (2018).
  22. Hu, X., et al. Genome-Wide Analyses of MicroRNA Profiling in Interleukin-27 Treated Monocyte-Derived Human Dendritic Cells Using Deep Sequencing: A Pilot Study. International Journal of Molecular Sciences. 18 (5), (2017).
  23. Huang, J., et al. MicroRNA miR-126-5p Enhances the Inflammatory Responses of Monocytes to Lipopolysaccharide Stimulation by Suppressing Cylindromatosis in Chronic HIV-1 Infection. Journal of Virology. 91 (10), (2017).
  24. Lodge, R., et al. Host MicroRNAs-221 and -222 Inhibit HIV-1 Entry in Macrophages by Targeting the CD4 Viral Receptor. Cell Reports. 21 (1), 141-153 (2017).
  25. Ma, L., Shen, C. J., Cohen, E. A., Xiong, S. D., Wang, J. H. miRNA-1236 inhibits HIV-1 infection of monocytes by repressing translation of cellular factor VprBP. PLoS ONE. 9 (6), e99535 (2014).
  26. Riess, M., et al. Interferons Induce Expression of SAMHD1 in Monocytes through Down-regulation of miR-181a and miR-30a. Journal of Biological Chemistry. 292 (1), 264-277 (2017).
  27. Buchacher, T., Ohradanova-Repic, A., Stockinger, H., Fischer, M. B., Weber, V. M2 Polarization of Human Macrophages Favors Survival of the Intracellular Pathogen Chlamydia pneumoniae. PLoS ONE. 10 (11), e0143593 (2015).
  28. Jaguin, M., Houlbert, N., Fardel, O., Lecureur, V. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cellular Immunology. 281 (1), 51-61 (2013).
  29. Lacey, D. C., et al. Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models. Journal of Immunology. 188 (11), 5752-5765 (2012).
  30. Tarique, A. A., et al. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. American Journal of Respiratory Cell and Molecular Biology. 53 (5), 676-688 (2015).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

HIV InfectionImmune DysfunctionPrimary Human MonocytesMonocyte CultureTransfection MethodIsolation TechniqueBiosafety ProtocolsHuman BloodMonocyte Isolation KitMagnetic BeadsSterile PBSCell SuspensionCentrifugation

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone