A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Presented here is an optimized protocol for isolating, culturing, transfecting, and differentiating human primary monocytes from HIV-infected individuals and healthy controls.
Human immunodeficiency virus (HIV) remains a major health concern despite the introduction of combined antiretroviral therapy (cART) in the mid-1990s. While antiretroviral therapy efficiently lowers systemic viral load and restores normal CD4+ T cell counts, it does not reconstitute a completely functional immune system. A dysfunctional immune system in HIV-infected individuals undergoing cART may be characterized by immune activation, early aging of immune cells, or persistent inflammation. These conditions, along with comorbid factors associated with HIV infection, add complexity to the disease, which cannot be easily reproduced in cellular and animal models. To investigate the molecular events underlying immune dysfunction in these patients, a system to culture and manipulate human primary monocytes in vitro is presented here. Specifically, the protocol allows for the culture and transfection of primary CD14+ monocytes obtained from HIV-infected individuals undergoing cART as well as from HIV-negative controls. The method involves isolation, culture, and transfection of monocytes and monocyte-derived macrophages. While commercially available kits and reagents are employed, the protocol provides important tips and optimized conditions for successful adherence and transfection of monocytes with miRNA mimics and inhibitors as well as with siRNAs.
Human immunodeficiency virus-1 (HIV-1) infection causes severe immune dysfunction, which can lead to opportunistic infections and acquired immunodeficiency syndrome (AIDS). Although HIV-infected patients undergoing cART are characterized by low viral loads and normal CD4+ T cell counts, functioning of the immune system can be compromised in these individuals, leading to a dysfunctional immune response that has been linked to an increased risk of developing cancer1. The mechanisms of immune dysfunction in HIV patients on cART remain largely unknown. Therefore, characterizing patient-derived immune cells and investigating their biology and function is a critical component of current HIV research.
Monocytes and macrophages are key regulators of immune responses and play fundamental roles in HIV infection2,3,4,5. Heterogeneous and plastic in nature, macrophages can be broadly classified into classically activated (M1) or alternatively activated (M2). While this general classification is necessary when setting up experimental conditions, the polarization status of macrophages may be reversed by a variety of cytokines6,7,8,9. Although several studies have investigated the effects of HIV infection on monocytes and dendritic cells, molecular details of monocyte-mediated responses are largely unknown6,7,10,11,12,13,14,15,16,17,18,19. Among the factors involved in immune cell regulation and function, microRNAs (miRNAs), short non-coding RNAs that post-transcriptionally regulate gene expression, have been shown to play an important role in the context of major cellular pathways (i.e., growth, differentiation, development, and apoptosis)20. These molecules have been described as important regulators of transcription factors essential for dictating the functional polarization of macrophages21. The potential role of miRNAs in monocytes from HIV-infected individuals undergoing cART has been investigated, but progress in the field requires much more work22,23,24,25,26. This paper discusses an optimized method to transfect miRNAs and siRNAs into primary human monocytes from HIV-infected patients and controls.
This protocol relies on commercially available reagents and kits, as continuity in the technical procedure helps eliminate unnecessary experimental variables when working with clinical samples. Nonetheless, the method provides important tips (i.e., the number of cells plated or brief incubation with serum-free media to promote the adherence of cells to the plate). Additionally, the polarization conditions used in this protocol are derived from published work27,28,29.
All methods described below have been approved by the Louisiana State University Health Sciences Center New Orleans Institutional Review Board. All blood was collected after obtaining informed consent.
NOTE: The entire procedure is performed under sterile conditions in a biosafety level 2 (BSL2) facility so that caution is used to handle biological materials. In particular, each step is performed using sterile techniques under a biosafety cabinet. After each step involving blood, blood products, cells, or cell product pipetting, it is important to rinse all plastic material (i.e., serological pipettes, pipette tips, and tubes) with 10% bleach from a waste container inside the hood prior to proper disposal.
1. Isolation of primary human monocytes by immunomagnetic negative selection
2. Culturing of primary human monocytes
3. Transfecting primary human monocytes in culture
4. M1/M2 differentiation and activation
5. Flow cytometry
Using the procedure described, primary human monocytes from HIV-infected individuals and healthy donors were isolated. All data presented here were obtained from HIV+ subjects undergoing cART with low (<20 copies/mL) or undetectable viral loads and normal CD4+ T cell counts. Immediately after isolation, cells were stained, and flow cytometry was performed to confirm the purity of cell populations. Results showed that >97% of cells stained positive for CD14 (d...
The presented protocol demonstrates the use of primary cells from HIV-infected subjects as a model for studying monocytes and macrophages. HIV+ patients undergoing cART live with infection for multiple years and can also have other co-infections related a compromised immune system. To study immunomodulation in the presence of HIV chronic infection, cells were harvested from patients directly. As miRNAs have been shown to play major roles in cell development and differentiation, the protocol focuses on the abil...
The authors have nothing to disclose.
The authors would like to thank the HIV Clinical/Tumor Biorepository Core for providing patient samples and the Cellular Immunology Metabolism Core for providing flow cytometry analysis. This project was funded by NIH P20GM121288 and P30GM114732.
Name | Company | Catalog Number | Comments |
0.5M EDTA | Invitrogen | AM9260G | |
BD Vacutainer Plastic Blood Collection Tubes with K2EDTA | BD Biosciences | 366643 | |
Brilliant Stain Buffer | BD Horizon | 563794 | Flow cytometry |
CD14 PerCP | Invitrogen | 46-0149-42 | Flow cytometry- conjugated antibody |
CD163 BV711 | BD Horizon | 563889 | Flow cytometry- conjugated antibody |
CD209 BV421 | BD Horizon | 564127 | Flow cytometry- conjugated antibody |
CD80 FITC | BD Horizon | 557226 | Flow cytometry- conjugated antibody |
CD83 APC | BD Horizon | 551073 | Flow cytometry- conjugated antibody |
Easy 50 EasySep Magnet | StemCell Technologies | 18002 | |
Easy Sep Direct Human Monocyte Isolation Kit | StemCell Technologies | 19669 | |
EIF4EBP1 mAb | Cell Signaling | 9644 | Monoclonal antibody for Western blot |
EIF4EBP1 siRNA | Santa Cruz | sc-29594 | |
Fetal Bovin Serum Defined Heat Inactivated | Hyclone | SH30070.03HI | |
Gallios Flow Cytometer | Beckman Coulter | B43618 | |
GAPDH mAb | Santa Cruz | SC-47724 | Monoclonal antibody for Western blot |
HuFcR Binding Inhibitor | eBiosciences | 14-9161-73 | Flow cytometry- blocking buffer |
Kaluza Analysis Software | Beckman Coulter | B16406 | Software to analyze flow cytometry data |
Lipopolysaccharides from Escherichia coli O55:B5 | Sigma | L4524 | |
miRCURY LNA microRNA Mimic hsa-miR-146a-5p | Qiagen | YM00472124 | |
MISSION miRNA Negative Control | Sigma | HMC0002 | Scrambled miRNA conjugated with a near infrared dye |
Nunc 35mm Cell Culture Dish | Thermo Scientific | 150318 | |
PBS | Gibco | 20012027 | |
Penicillin-Streptomycin | Gibco | 15140122 | |
Recombinant Human GM-CSF | R&D Systems | 215-GM-050 | |
Recombinant Human IFN-γ | R&D Systems | 285-IF-100 | |
Recombinant Human IL-4 | R&D Systems | 204-IL-010 | |
Recombinant Human M-CSF | R&D Systems | 216-MC-025 | |
RPMI 1640 with L-Glutamine | Corning | 10040CVMP | |
Scrambled Control siRNA | Santa Cruz | sc-37007 | |
Viromer Blue Transfection Reagent Kit | Lipocalyx | VB-01LB-01 | |
WST-1 Cell Proliferation Reagent | Roche | 5015944001 | Colorimetric assay to assess cell viability |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved