Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This manuscript describes a protocol for determining whether exposure to ozone, a criteria air pollutant, impairs alveolar macrophage efferocytosis in vivo. This protocol utilizes commonly used reagents and techniques and can be adapted to multiple models of pulmonary injury to determine effects on alveolar macrophage efferocytosis.
Ozone (O3) is a criteria air pollutant that exacerbates and increases the incidence of chronic pulmonary diseases. O3 exposure is known to induce pulmonary inflammation, but little is known regarding how exposure alters processes important to the resolution of inflammation. Efferocytosis is a resolution process, whereby macrophages phagocytize apoptotic cells. The purpose of this protocol is to measure alveolar macrophage efferocytosis following O3-induced lung injury and inflammation. Several methods have been described for measuring efferocytosis; however, most require ex vivo manipulations. Described in detail here is a protocol to measure in vivo alveolar macrophage efferocytosis 24 h after O3 exposure, which avoids ex vivo manipulation of macrophages and serves as a simple technique that can be used to accurately represent perturbations in this resolution process. The protocol is a technically non-intensive and relatively inexpensive method that involves whole-body O3 inhalation followed by oropharyngeal aspiration of apoptotic cells (i.e., Jurkat T cells) while under general anesthesia. Alveolar macrophage efferocytosis is then measured by light microscopy evaluation of macrophages collected from bronchoalveolar (BAL) lavage. Efferocytosis is finally measured by calculating an efferocytic index. Collectively, the outlined methods quantify efferocytic activity in the lung in vivo while also serving to analyze the negative health effects of O3 or other inhaled insults.
The lung is constantly exposed to environmental insults, including air particulates, viruses, bacteria, and oxidant gases that trigger pulmonary inflammation1,2,3. These insults can compromise gas exchange and induce irreversible tissue injury4,5. Alveolar macrophages, which constitute approximately 95% of the immune cells found in murine and human lungs at homeostasis, are critical regulators of pulmonary inflammation after environmental insults1,2,3,4,5. Alveolar macrophages are essential during the host defense by phagocytizing and eliminating pathogens. Recently, alveolar macrophages have been shown to promote tissue homeostasis and the resolution of inflammation through efferocytosis6,7. Efferocytosis is a phagocytic process in which macrophages engulf and eliminate apoptotic cells8,9,10. Efferocytosis also results in the production of mediators (i.e., IL-10, TGF-β, PGE2, and nitric oxide) that further augment the process, resulting in the resolution of inflammation9,10,11,12,16,18. This process is necessary for preventing secondary necrosis and promoting tissue homeostasis12,13,14. Several studies have linked impaired efferocytosis with various chronic lung diseases, including asthma, chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis8,9,15,16,17.
O3 is a criteria air pollutant that exacerbates and increases the incidence of chronic pulmonary diseases19,20,21. O3 induces pulmonary inflammation and injury and is known to impair alveolar macrophage phagocytosis of bacterial pathogens22,23. However, it is unknown whether O3 impairs alveolar macrophage efferocytosis. Investigating O3-induced alterations in alveolar macrophage efferocytosis will provide potential insight into how exposure can lead to chronic pulmonary disease incidence and exacerbation. Described below is a simple method to evaluate alveolar macrophage efferocytosis in the lungs of female mice after acute O3 exposure.
The outlined method posseses several advantages over other efferocytosis protocols commonly used in the field by eliminating the use of costly fluorescent dyes, extensive flow cytometry measurements, and ex vivo manipulation of alveolar macrophages24,25. Additionally, this protocol measures alveolar macrophage efferocytosis in the context of the lung microenvironment, which can influence macrophage function.
Access restricted. Please log in or start a trial to view this content.
All methods have been approved by the Institutional Animal Care and Use Committee (IACUC) of East Carolina University.
1. Ozone (O3) and filtered air exposures (Day 1)
2. Preparation of Jurkat T cell line (Day 2)
NOTE: All procedures should be conducted in a class II biological safety cabinet.
3. Murine oropharyngeal instillation of apoptotic cells (Day 2)
4. Bronchoalveolar lavage fluid collection and processing (Day 2)
5. Calculation of alveolar macrophage efferocytic index (Day 3)
Access restricted. Please log in or start a trial to view this content.
O3 exposure is known to induce pulmonary inflammation and injury, and efferocytosis is required to maintain tissue homeostasis. C57BL/6J female mice were exposed to filtered air (FA) or 1 ppm O3 for 3 h and necropsied 24 h post-exposure to examine pulmonary inflammation and injury. O3-exposed mice displayed a significant increase in macrophages and neutrophils in the airspace compared to the FA control group (Figure 1A...
Access restricted. Please log in or start a trial to view this content.
Efferocytosis is an anti-inflammatory process in which macrophages clear apoptotic cells and debris as well as produce multiple anti-inflammatory mediators9,10,11,12,16,18. Multiple models of efferocytosis have provided insight into how the macrophage is a critical cell in the resolution of inflammation6
Access restricted. Please log in or start a trial to view this content.
The authors declare no conflicts of interest.
This study is funded by Health Effects Institute Walter A. Rosenblith Award and NIEHS R01ES028829 (to K. M. G). We would like to thank Dr. Dianne Walters (Department of Physiology, ECU) for her assistance with obtaining representative images of alveolar macrophages.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Annexin V-FITC Kit | Trevigen | 4830-250-K | The TACS Annexin V-FITC Kit allows rapid, specific, and quantitative identification of apoptosis in individual cells when using flow cytometry. |
BCL2 Jurkat T Cells | ATCC | ATCC CRL-2899 | The BCL2 Jurkat cell line was derived by transfecting human Jurkat T cells with the pSFFV-neo mammalian expression vector containing the human BCL-2 ORF insert and a neomycin-resistant gene. Has been for models of measuring efferocytosis. |
Countess II Automated Cell Counter | Thermofisher | AMQAX1000 | It is a benchtop assay platform equipped with state-of-the-art optics, full autofocus, and image analysis software for rapid assessment of cells in suspension. Very easy to use. |
Cytospin 4 Cytocentrifuge | Thermofisher | A78300003 | Provides economical thin-layer preparations from any liquid matrix, especially hypocellular fluids such as bronchoalveolar lavage fluid. |
Fetal Bovine Serum, qualified, heat inactivated | Thermofisher | 16140071 | Provides Nutrients to cultured cells for them to grow. It is standard for cell culture. |
Kwik-Diff Reagent 2, Eosin | Thermofisher | 9990706 | Eosin staining that stains cytoplasm. |
Kwik-Diff Reagent 1, Fixative | Thermofisher | 9990705 | Fixes cells to be stained by H&E. |
Kwik-Diff Reagent 3, Methylene Blue | Thermofisher | 9990707 | Methylene Blue staining that stains the nucleus. |
Penicillin-Streptomycin | Sigma/Aldrich | P0781-100ML | Penicillin-Streptomycin is the most commonly used antibiotic solution for culture of mammalian cells. Additionally it is used to maintain sterile conditions during cell culture. |
RPMI 1640 Medium, GlutaMAX Supplement | Thermofisher | 61870036 | RPMI 1640 Medium (Roswell Park Memorial Institute 1640 Medium) was originally developed to culture human leukemic cells in suspension and as a monolayer. RPMI 1640 medium has since been found suitable for a variety of mammalian cells, including HeLa, Jurkat, MCF-7, PC12, PBMC, astrocytes, and carcinomas. Helps grow Jurkat T cells fast and efficiently. |
Stratagene UV Stratalinker 1800 UV Crosslinker | Cambridge Scientific | 16659 | The Stratalinker UV crosslinker is designed to induce apoptosis, crosslink DNA or RNA to nylon, nitrocellulose, or nylon-reinforced nitrocellulose membranes. |
Teledyne T400 ultraviolet light photometer | Teledyne API | T400 | The Model T400 UV Absorption analyzer uses a system based on the Beer-Lambert law for measuring low ranges of ozone in ambient air. |
Teledyne T703 Ozone calibrator | Teledyne API | T703 | Provides feedback control of the UV lamp intensity, assuring stable ozone output. |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone