Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here, we present a method for visualizing the uptake of 3 kDa Texas Red-labeled dextran in auditory hair cells with functional mechanotransduction channels. In addition, dextrans of 3–10 kDa can be used to study endocytosis in hair and supporting cells of the organ of Corti.
The hair cell mechanotransduction (MET) channel plays an important role in hearing. However, the molecular identity and structural information of MET remain unknown. Electrophysiological studies of hair cells revealed that the MET channel has a large conductance and is permeable to relatively large fluorescent cationic molecules, including some styryl dyes and Texas Red-labeled aminoglycoside antibiotics. In this protocol, we describe a method to visualize and evaluate the uptake of fluorescent dextrans in hair cells of the organ of Corti explants that can be used to assay for functional MET channels. We found that 3 kDa Texas Red-labeled dextran specifically labels functional auditory hair cells after 1–2 h incubation. In particular, 3 kDa dextran labels the two shorter stereocilia rows and accumulates in the cell body in a diffuse pattern when functional MET channels are present. An additional vesicle-like pattern of labeling was observed in the cell body of hair cells and surrounding supporting cells. Our data suggest that 3 kDa Texas-Red dextran can be used to visualize and study two pathways for cellular dye uptake; a hair cell-specific entry route through functional MET channels and endocytosis, a pattern also available to larger dextran.
The hair cells of the inner ear are the sensory cells that detect sound and covert the mechanically stimuli in electrical signals, which are ultimately interpreted by our brain. These cells have a staircase-shaped bundle of three rows of actin-based filaments, known as stereocilia, which protrude from their apical region1,2. The mechanical stimuli deflect the stereocilia filaments toward the longest row and trigger the opening of the mechanotransduction (MET) channels3. The opening of the MET channels leads to an influx of cations that depolarizes the cell and consequently signals the release of synapse vesicles at the basal region of the hair cell.
The biophysical properties of the MET channel essential for hearing have been extensively characterized. Among other properties, these channels are cationic selective and have a relatively large conductance (150–300 pS in low Ca2+)4,5,6,7,8,9,10. Remarkably, large fluorescent molecules such as FM1-43 and Texas Red-labeled aminoglycosides are permeant blockers of the MET channel, resulting in their accumulation in the hair cell body that can be visualized using fluorescence microscopy11,12,13,14. Conversely, the molecular identity and the structure of the MET channel and its permeation pathway have remained elusive. Increasing experimental evidence indicates that the transmembrane-like channel protein 1 (TMC1) is a component of the MET channel in mature hair cells15,16,17,18,19. Mutations in the transmembrane-like channel 1 (TMC1) alter the MET channel properties19,20,21,22 and cause deafness. In addition, TMC1 localizes to the site of the MET channel18,23 and interacts with the tip-link responsible for transmitting the mechanical force to the MET channel24,25. Furthermore, recent bioinformatics analysis has identified the TMC proteins as evolutionary related to the mechanosensitive channels TMEM63/OSCA proteins and the TMEM16 proteins, a family of calcium-activated chloride channels and lipid scramblases26,27,28. A structural model of TMC1 based on the relationship between these proteins revealed the presence of a large cavity at the protein-lipid interface27. This cavity harbors the two TMC1 mutations that cause autosomal dominant hearing loss (DFNA36)27,29,30,31,32, and selective modification of cysteine mutants for residues in the cavity alter MET channel properties28, indicating that it could function as the permeation pathway of the MET channel. The large size of this predicted cavity in TMC proteins could explain the ability of large molecules to permeate the MET channel. To test the prediction that the MET channel contains an unusually large permeation pathway and to push the limits of the size of the cavity observed in TMC1, we developed a protocol to perform uptake experiments in the organ of Corti explants with a larger molecule, 3 kDa dextran fluorescently labeled with Texas Red.
Dextran is a complex branched polysaccharide composed of many D-glucose molecules bound by alpha-1,6 glycosidic linkages. Its high solubility in water, low cell toxicity, and bioinertity make it a versatile tool to study several cellular processes. In addition, dextran is available in a wide range of sizes and fluorescently labeled with fluorophores of several colors. Fluorescently labeled dextrans are commonly used in cell and tissue permeability research33,34, to study endocytosis in multiple cellular systems35,36, and for neural tracing37,38. In the auditory field, dextran molecules have also been used to assess the disruption of the cell-cell junction and loss of the auditory sensory epithelium integrity after exposure to intense noise in the chinchilla organ of Corti39,40.
In this work, we exploited the properties of some of the smallest (3 and 10 kDa) fluorescent dextrans to perform uptake experiments in murine inner ear hair cells and explore the size of the permeation pathway of the inner ear hair cell MET channel. In addition, we used a laser-scanning confocal microscope (LSM) 880 equipped with an Airyscan detector to visualize and localize fluorescent dextran at the stereocilia and the cell body of auditory hair cells.
The animal care and experimental procedures were performed following the guidelines for the Care and Use of Laboratory Animals, which were approved by the Animal Care and Use Committee of the National Institute of Neurological Disorders and Stroke (Animal protocol #1336 to KJS).
1. Mice
2. Cochleae Dissection
3. Dextran Labeling
4. Sample Preparation for Imaging
5. Image Acquisition and Image Processing
NOTE: The confocal images were taken with a LSM 880 confocal microscope equipped with a 32 channel Airyscan detector in the super-resolution (SR) mode43 and a 63x objective.
We observed robust and specific labeling of hair cells after 2h incubation of organ of Corti explants from wild-type postnatal-day-6 (P6) mice with 3 kDa dextran fluorescently labeled with Texas Red (dextran-TR) (Figure 2A-B). Dextran labeling was observed in both inner and outer hair cells (IHC and OHC) at the basal, middle, and apical regions of the organ of Corti (Figure 2B).
Fluorescently labeled ...
This protocol describes how to perform uptake experiments in murine organ of Corti explants with 3 kDa dextran Texas Red. The goal of this method is to test whether molecules larger than others previously tested were also able to specifically label auditory hair cells and permeate through the MET channel. Similar experimental protocols have been previously used to evaluate the permeability of hair cells to other fluorescent dyes such as FM1-43 (0.56 kDa)12,19
The authors have nothing to disclose.
We thank Vincent Schram from the NICHD microscopy and imaging core for assisting in the confocal image acquisition, and Tsg-Hui Chang for invaluable help with colony management and mice care. This research was supported by the Intramural Research Program of the NINDS, NIH, Bethesda, MD, to K.J.S. A.B. was supported by the Intramural Research Program of the NINDS, NIH, and by a Robert Wenthold Postdoctoral Fellowship from the intramural research program of the NIDCD.
Name | Company | Catalog Number | Comments |
#1.5 glass coverslips 18mm | Warner Instruments | 64-0714 | |
Alexa Fluor 488 Phalloidin | ThermoFisher | A12379 | |
Alexa Fluor 594 Phalloidin | ThermoFisher | A12381 | |
alpha Plan-Apochromat 63X/1.4 Oil Corr M27 objective | Carl Zeiss | 420780-9970-000 | |
Amiloride hydrochloride | EMD MILLIPORE | 129876 | |
Benchwaver 3-dimensional Rocker | Benchmarks scientific | B3D5000 | |
C57BL/6J wild-type mice | strain 000664 | The Jackson Laboratory | |
Cell impermeant BAPTA tetrapotassium salt | ThermoFisher | B1204 | |
Dextran, Fluorescein, 10,000 MW, Anionic, Lysine Fixable | ThermoFisher | D1820 | |
Dextran, Texas Red, 10,000 MW, Lysine Fixable | ThermoFisher | D1863 | |
Dextran, Texas Red, 3000 MW, Lysine Fixable | ThermoFisher | D3328 | |
Formaldehyde Aqueous Solution EM Grade | Electron microscopy science | 15710 | |
HBSS, calcium, magnesium, no phenol red | ThermoFisher | 14025 | |
HBSS, no calcium, no magnesium, no phenol red | ThermoFisher | 14170 | |
Image J or FIJI | NIH | http://fiji.sc/ | |
Immersol 518F oil immersion media | Carl Zeiss | 444970-9000-000 | |
Leibovitz's L-15 Medium, GlutaMAX Supplement | ThermoFisher | 31415029 | |
neomycin trisulfate salt hydrate | Sigma | N6386 | |
PBS (10X), pH 7.4 | ThermoFisher | 70011069 | |
Phalloidin-CF405M | Biotium | 00034 | |
ProLong Diamond antifade mounting media | ThermoFisher | P36970 | |
superfrost plus microscope slide | Fisherbrand | 22-037-246 | |
Triton X-100 | Sigma | T8787 | |
Zen Black 2.3 SP1 software | Carl Zeiss | https://www.zeiss.com/microscopy/us/products/microscope-software/zen.html |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone