Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
Presented here is a stepwise procedure for in vitro differentiation of human primary keratinocytes by contact inhibition followed by characterization at the molecular level by RNA-seq analysis.
Human primary keratinocytes are often used as in vitro models for studies on epidermal differentiation and related diseases. Methods have been reported for in vitro differentiation of keratinocytes cultured in two-dimensional (2D) submerged manners using various induction conditions. Described here is a procedure for 2D in vitro keratinocyte differentiation method by contact inhibition and subsequent molecular characterization by RNA-seq. In brief, keratinocytes are grown in defined keratinocyte medium supplemented with growth factors until they are fully confluent. Differentiation is induced by close contacts between the keratinocytes and further stimulated by excluding growth factors in the medium. Using RNA-seq analyses, it is shown that both 1) differentiated keratinocytes exhibit distinct molecular signatures during differentiation and 2) the dynamic gene expression pattern largely resembles cells during epidermal stratification. As for comparison to normal keratinocyte differentiation, keratinocytes carrying mutations of the transcription factor p63 exhibit altered morphology and molecular signatures, consistent with their differentiation defects. In conclusion, this protocol details the steps for 2D in vitro keratinocyte differentiation and its molecular characterization, with an emphasis on bioinformatic analysis of RNA-seq data. Because RNA extraction and RNA-seq procedures have been well-documented, it is not the focus of this protocol. The experimental procedure of in vitro keratinocyte differentiation and bioinformatic analysis pipeline can be used to study molecular events during epidermal differentiation in healthy and diseased keratinocytes.
Human primary keratinocytes derived from the human skin are often used as a cellular model to study the biology of the epidermis1,2,3,4. The stratification of the epidermis can be modeled by keratinocyte differentiation, either in a 2D submerged monolayer fashion or 3D air-lift organotypic model2,3,5,6,7. Although 3D models have become increasingly important to assess the epidermal structure and function, 2D differentiation models are still widely used, due to their convenience and the possibility to generate large numbers of cells for analyses.
Various conditions have been applied for inducing keratinocyte differentiation in 2D, including addition of serum, high concentration of calcium, lower temperature and inhibition of epidermal growth factor receptors2,3. Each of these methods has been validated by a number of keratinocyte differentiation marker genes and shown to be effective in assessing keratinocyte differentiation, including under pathological conditions. However, these induction conditions also show differences in their differentiation efficiency and kinetics when specific panels of marker genes are examined2,3.
One of these methods involves keratinocyte contact inhibition and depletion of growth factors in the culture medium8. It has been shown that keratinocytes can differentiate spontaneously when cells reach full density. Excluding growth factors in the culture medium can further enhance differentiation. The method combining contact inhibition and depleting growth factors has been shown to generate differentiated keratinocytes with gene expression patterns similar to the normal stratified epidermis when using several epidermal markers3, suggesting that this model is suitable for studying normal keratinocyte differentiation. Recently, two comprehensive gene expression analyses of keratinocyte differentiation using this model have been reported9,10. Researchers validated this model at the molecular level and showed that it can be used to study normal and diseased keratinocyte differentiation.
This protocol describes the procedure for the in vitro differentiation method and molecular analysis of differentiated cells using RNA-seq. It also illustrates characterization of the transcriptome of cells on differentiation day 0 (proliferation stage), day 2, day 4, and day 7 (early, middle, and late differentiation, respectively). It is shown that differentiated keratinocytes display gene expression patterns that largely resemble cells during epidermal stratification. To examine whether this method can be used for studying skin pathology, we applied the same experimental and analysis pipeline to investigate keratinocytes carrying mutations of the transcription factor p63 that are derived from patients with ectrodactyly, ectodermal displasia and cleft lip/palate (EEC) syndrome11,12. This protocol focuses on the in vitro differentiation of keratinocytes as well as subsequent bioinformatic analysis of RNA-seq. Other steps in the complete procedure such as RNA extraction, RNA-seq sample preparation and library construction, are well documented and can be easily followed, especially when using many commonly used commercial kits. Therefore, these steps are only briefly described in the protocol. The data show that this pipeline is suitable for studying molecular events during epidermal differentiation in healthy and diseased keratinocytes.
Skin biopsies were taken from the trunk of healthy volunteers or patients with p63 mutations, to set up the primary keratinocyte culture. All procedures regarding establishing human primary keratinocytes were approved by the ethical committee of the Radboud University Nijmegen Medical Centre (“Commissie Mensgebonden Onderzoek Arnhem-Nijmegen”). Informed consent was obtained.
1. Human primary keratinocyte differentiation by contact inhibition
2. RNA extraction
3. RNA quality check
4. RNA-seq library preparation
NOTE: The RNA-seq library preparation is often performed with a commercial kit or under commercial settings. The described protocol is adapted from a commercial kit, KAPA RNA HyperPrep Kit with RiboErase (Illumina), with a brief description of all required steps: rRNA depletion with oligo hybridization to human ribosomal RNAs, RNA fragmentation, first-strand synthesis, second-strand synthesis and A-tailing, and cleanup after each step15. Other library preparation kits can also be used for this purpose. It is recommended to perform this step using a commercially available kit, as the quality of generated cDNA library is often more consistent. 2) The following steps are described for 1x library preparation. If preparing several samples, make master mixes with 10% extra volume.
5. Data pre-processing
6. RNA-seq data analysis
Normal keratinocyte differentiation and RNA-seq analysis
In this experiment, keratinocyte lines derived from five individuals were used for differentiation and RNA-seq analyses. Figure 1 summarizes the experimental procedure of differentiation and RNA-seq analysis results. An overview of in vitro differentiation procedures of normal keratinocytes and cell morphology changes during differentiation are illustrated in Figure 1A. Principle com...
This work describes a method for inducing human keratinocyte differentiation and subsequent characterization using RNA-seq analyses. In the current literature, many studies on human keratinocyte differentiation use two other methods, with a high calcium concentration or with serum as methods to induce differentiation2,3,23. A previous report carefully compared these three different methods3 and showe...
The authors have nothing to disclose.
This research was supported by Netherlands Organisation for Scientific Research (NWO/ALW/MEERVOUD/836.12.010, H.Z.) (NWO/ALW/Open Competition/ALWOP 376, H.Z., J.G.A.S.); Radboud University fellowship (H.Z.); and Chinese Scholarship Council grant 201406330059 (J.Q.).
Name | Company | Catalog Number | Comments |
Bioanalyzer 2100 | Agilent | G2929BA | |
Bovine pituitary extract (BPE) | Lonza | Part of the bulletKit | |
CFX96 Real-Time system | Bio-Rad | qPCR machine | |
Dulbecco's Phosphate-Buffered Saline (DPBS) | Sigma-Aldrich | D8537 | |
Epidermal Growth Factor (EGF) | Lonza | Part of the bulletKit | |
Ethanolamine >= 98% | Sigma-Aldrich | E9508 | |
High Sensitivity DNA chips | Agilent | 5067-4626 | |
Hydrocortison | Lonza | Part of the bulletKit | |
Insulin | Lonza | Part of the bulletKit | |
iQ SYBR Green Kit | BioRad | 170-8886 | |
iScript cDNA synthesis | Bio rad | 1708890 | |
KAPA Library Quant Kit | Roche | 07960255001 | Low concentration measure kit |
KAPA RNA HyperPrep Kit with RiboErase | Roche | KK8540 | RNAseq kit |
KGM Gold Keratinocyte Growth Medium BulletKit | Lonza | 192060 | |
Nanodrop | deNovix | DS-11 FX (model) | Nanodrop and Qbit for DNA and RNA measurements |
NEXTflex DNA barcodes -24 | Illumnia | NOVA-514103 | 6 bp long primers |
Penicillin-Streptomycin | Gibco | 15140122 | |
RNA Pico Chip | Agilent | 5067-1513 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone