Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
The present protocol aims to experimentally create venous intimal hyperplasia by subjecting veins to arterial blood pressure for developing strategies to attenuate venous intimal hyperplasia following revascularization surgery using vein grafts.
Although vein grafts have been commonly used as autologous grafts in revascularization surgeries for ischemic diseases, the long-term patency remains poor because of the acceleration of intimal hyperplasia due to the exposure to arterial blood pressure. The present protocol is designed for the establishment of experimental venous intimal hyperplasia by interposing rabbit jugular veins to the ipsilateral carotid arteries. The protocol does not require surgical procedures deep in the body trunk and the extent of the incision is limited, which is less invasive for the animals, allowing long-term observation after implantation. This simple procedure enables researchers to investigate strategies to attenuate the progression of intimal hyperplasia of the implanted vein grafts. Using this protocol, we reported the effects transduction of microRNA-145 (miR-145), which is known to control the phenotype of vascular smooth muscle cells (VSMCs) from the proliferative to the contractile state, into harvested vein grafts. We confirmed the attenuation of intimal hyperplasia of vein grafts by transducing miR-145 before implantation surgery through the phenotype change of the VSMCs. Here we report a less invasive experimental platform to investigate the strategies that can be used to attenuate intimal hyperplasia of vein grafts in revascularization surgeries.
The number of patients experiencing ischemic diseases due to atherosclerosis is increasing worldwide1. Despite the current advances in medical and surgical therapies for cardiovascular diseases, ischemic heart diseases, such as myocardial infarction, remain a major cause of morbidity and mortality2. Furthermore, peripheral arterial diseases characterized by reduced blood flow to the limbs induces critical limb ischemia, wherein approximately 40% of the patients lose their legs within 6 months of diagnosis, and the mortality rate is up to 20%3.
Revascularization surgeries, such as coronary artery bypass grafting (CABG) and bypass surgery for peripheral arteries, are major therapeutic options for ischemic diseases. The purpose of these surgeries is to provide a new blood pathway to provide sufficient blood flow toward the distal site of the stenotic or occluded lesions of the atherosclerotic arteries. Although in situ arterial grafts, such as internal thoracic arteries for CABG, are preferred as the bypass grafts because of the expected longer patency, vein grafts, such as autologous saphenous veins, are commonly used because of the higher accessibility and availability4. The weak point of the vein grafts is the poor patency rate compared to that of artery grafts5 due to accelerated intimal hyperplasia when subjected to arterial pressure, which leads to vein graft disease6.
Vein graft disease develops through the following three steps: 1) thrombosis; 2) intimal hyperplasia; and 3) atherosclerosis7. In order to address vein graft disease, a lot of basic research has been conducted8. Thus far, no pharmacological strategy other than antiplatelet and lipid-lowering therapies are recommended for secondary prevention after coronary or peripheral revascularization surgeries in recent guidelines9,10,11,12. Thus, to overcome vein graft disease, especially intimal hyperplasia, the establishment of a relevant experimental platform for further studies is required.
Intimal hyperplasia is an adaptive phenomenon that occurs in response to the change in the surroundings, where vascular smooth muscle cells (VSMCs) proliferate, accumulate, and generate extracellular matrix in the intima. Consequently, it presents a foundation for graft atheroma7. In the hyperplastic intima, VSMCs bear proliferation, and production rather than contraction, termed “phenotypic change”8. It is a key research target to control the phenotype of the VSMCs of the vein grafts to prevent vein graft disease, and numerous basic studies have been conducted on this topic8. However, a randomized controlled clinical study that aimed to achieve pharmacological control of the VSMC phenotype showed limited results13. Further, there are no standardized therapies to prevent intimal hyperplasia. More basic research, including animal model studies, is necessary.
To promote research in this field, it is crucial to establish an animal model that recapitulates vein grafts under arterial blood pressure, allowing a long-term, postoperative observation. Carrel et al. established a canine model of implantation of the external jugular vein into the carotid artery14. Therafter, a variety of vein grafts have been employed to investigate the physiological and pathological effects of alterations in arterial blood pressure, including the inferior vena cava engrafted into the thoracic or the abdominal aorta, or the saphenous vein engrafted into the femoral artery15,16,17. These models were built in larger animals, such as pigs or dogs, that are suitable for mimicking a vein graft disease in a clinical case. However, the establishment of an animal model that can be prepared without special surgical techniques and at a lower cost would be ideal for researchers trying to develop a new therapeutic strategy for attenuating intimal hyperplasia through VSMC phenotype control in vivo. Initially, the interposition of the jugular vein into the carotid artery in a rabbit was introduced in the field of neurosurgery18,19. Thereafter, it was applied to research on intimal hyperplasia20,21. The initial model consists of venous interposition alone, thus saving time. Moreover, a subsequent study demonstrated that the preparation of a vein graft also affected the intimal hyperplasia22. Davies et al. evaluated the effect of balloon catheter injury on the intimal hyperplasia in a rabbit venous interposition model23,24. Although balloon catheter injury in addition to vein interposition was more relevant to a clinical setting, a more reproducible model was also desired. Thus, Jiang et al. examined the impact of differential flow environments on intimal hyperplasia and established a distal branch ligation procedure as a reproducible model25. However, they employed a cuff technique at the time of vein graft interposition that seems different from hand-sewn anastomosis in the clinical setting. In the present protocol, we report a reproducible, clinically relevant, and broadly available procedure for the preparation of a rabbit venous interposition model to assess intimal hyperplasia under arterial blood pressure.
NOTE: All the surgical procedures performed on animals should be carried out in accordance with the Guide for the Care and Use of Laboratory Animals (www.nap.edu/catalog/5140.html) or other appropriate ethical guidelines. Protocols should be approved by the animal welfare committee at the appropriate institution before proceeding.
1. Preparation of animals
2. Anesthesia and animal setting
NOTE: All the subsequent procedures must be performed under aseptic conditions. The surgical field and devices should be disinfected with 10% povidone-iodine solution, 70% alcohol, or a quaternary ammonium compound before use.
3. Harvest of the jugular vein
NOTE: Local anesthetics (such as lidocaine) should be used before making the skin incision.
4. Interposing the carotid artery by the harvested jugular vein
5. Postoperative procedures
Figure 1A shows a representative image of successful intimal hyperplasia at 2 weeks after venous interposition surgery (upper panel). The lower panel shows the therapeutic effects of microRNA-145-loaded poly(lactic-co-glycolic acid) nanoparticles that attenuated the intimal hyperplasia (lower panel). Figure 1B shows the comparison of intimal hyperplasia between the control group using phosphate buffered saline control (PBS), control microRNA (Cont-miR), and micr...
The present protocol is designed to provide an experimental platform to test various molecular or genetic interventions for VSMCs to control the phenotype from the proliferative to the contractile state and subsequently attenuate the progression of venous intimal hyperplasia in vivo. Using this model, we successfully prepared intimal hyperplasia at 2 weeks after surgery (Figure 1A) and indicated the therapeutic potential of microRNA-145 to control the VSMC phenotype26...
The authors have nothing to disclose.
This work was supported by research grants from the Ministry of Education, Culture, Sports, Science and Technology, Japan (25462136).
Name | Company | Catalog Number | Comments |
10% Povidone-iodine solution | Nakakita | 872612 | Surgical expendables |
2-0 VICRYL Plus | Johnson and Johnson | VCP316H | Surgical expendables |
4-0 Silk suture | Alfresa pharma | GA04SB | Surgical expendables |
8-0 polypropylene suture | Ethicon | 8741H | Surgical expendables |
Cefazorin sodium | Nichi-Iko Pharmaceutical | 6132401D3196 | Antibiotics |
Fogarty Catheter (2Fr) | Edwards Lifesciences LLC | E-060-2F | Surgical expendables |
Heparin | Nipro | 873334 | Anticoagulant |
Intravenous catheter (20G) | Terumo | SR-OT2051C | Surgical expendables |
Isoflurane | Fujifilm | 095-06573 | Anesthesia |
Lidocaine hydrochloride | MP Biomedicals | 193917 | Anesthesia |
Pentobarbital sodium | Tokyo Chemical Industry | P0776 | Anesthesia |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone