Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Described here is a protocol for the determination of four different tryptophan metabolites generated in the kynurenine pathway (kynurenine, 3-hydroxykynurenine, xanthurenic acid, 3-hydroxyanthranilic acid) in the medium collected from cancer cell cultures analyzed by liquid chromatography coupled with a single quadrupole mass spectrometry.
The kynurenine pathway and the tryptophan catabolites called kynurenines have received increased attention for their involvement in immune regulation and cancer biology. An in vitro cell culture assay is often used to learn about the contribution of different tryptophan catabolites in a disease mechanism and for testing therapeutic strategies. Cell culture medium that is rich in secreted metabolites and signaling molecules reflects the status of tryptophan metabolism and other cellular events. New protocols for the reliable quantification of multiple kynurenines in the complex cell culture medium are desired to allow for a reliable and quick analysis of multiple samples. This can be accomplished with liquid chromatography coupled with mass spectrometry. This powerful technique is employed in many clinical and research laboratories for the quantification of metabolites and can be used for measuring kynurenines.
Presented here is the use of liquid chromatography coupled with single quadrupole mass spectrometry (LC-SQ) for the simultaneous determination of four kynurenines, i.e., kynurenine, 3-hydroxykynurenine, 3-hydroxyanthranilic, and xanthurenic acid in the medium collected from in vitro cultured cancer cells. SQ detector is simple to use and less expensive compared to other mass spectrometers. In the SQ-MS analysis, multiple ions from the sample are generated and separated according to their specific mass-to-charge ratio (m/z), followed by the detection using a Single Ion Monitoring (SIM) mode.
This paper draws the attention on the advantages of the reported method and indicates some weak points. It is focused on critical elements of LC-SQ analysis including sample preparation along with chromatography and mass spectrometry analysis. The quality control, method calibration conditions and matrix effect issues are also discussed. We described a simple application of 3-nitrotyrosine as one analog standard for all target analytes. As confirmed by experiments with human ovary and breast cancer cells, the proposed LC-SQ method generates reliable results and can be further applied to other in vitro cellular models.
Kynurenine pathway (KP) is the major route of tryptophan (Trp) catabolism in human cells. Indoleamine-2,3-dioxygenase (IDO-1) in extrahepatic cells is the first and limiting enzyme of KP and converts Trp into N-formylkynurenine1. Further steps within KP generate other secondary metabolites, namely kynurenines that exhibit various biological properties. Kynurenine (Kyn) is the first stable Trp catabolite showing toxic properties and regulating cellular events after binding to the aryl hydrocarbon receptor (AhR)2. Subsequently, Kyn is transformed into several molecules either spontaneously or in the enzyme-mediated processes, generating such metabolites like 3-hydroxykynurenine (3HKyn), anthranilic acid (AA), 3-hydroxyanthranilic acid (3-HAA), kynurenic acid (Kyna), and xanthurenic acid (XA). Another downstream metabolite, 2-amino-3-carboxymuconic acid-6-semialdehyde (ACMS), undergoes non-enzymatic cyclization to quinolinic acid (QA) or picolinic acid (PA)1. Finally, QA is further transformed into nicotinamide-adenine dinucleotide (NAD+)3, the KP end-point metabolite that is an important enzyme cofactor. Some kynurenines have neuroprotective properties such as Kyna and PA, while the others, i.e., 3HAA and 3HKyn, are toxic4. Xanthurenic acid, which is formed from 3HKyn, presents antioxidant and vasorelaxation properties5. XA accumulates in aging lenses and leads to apoptosis of epithelial cells6. KP, described in the middle of the 20th century, gained more attention when its involvement in various disorders was demonstrated. Increased activity of this metabolic route and accumulation of some kynurenines modulate the immune response and are associated with different pathological conditions such as depression, schizophrenia, encephalopathy, HIV, dementia, amyotrophic lateral sclerosis, malaria, Alzheimer’s, Huntington’s disease, and cancer4,7. Some changes in Trp metabolism are observed in tumor microenvironments and cancer cells2,8. Moreover, kynurenines are considered as promising disease markers9. In cancer research, in vitro cell culture models are well established and widely used for preclinical evaluation of responses to anticancer drugs10. Trp metabolites are secreted by cells into the culture medium and can be measured to assess the status of the kynurenine pathway. Therefore, there is a need to develop appropriate methods for the simultaneous detection of as many KP metabolites as possible in a variety of biological specimens with an easy, flexible, and reliable protocol.
In this paper, we describe a protocol for the simultaneous determination of four kynurenine pathway metabolites: Kyn, 3HKyn, 3HAA, and XA by LC-SQ in a post-culture medium collected from cancer cells. In a modern analytical approach, liquid chromatography13,14,15,16 is preferred for the simultaneous detection and quantification of the individual tryptophan catabolites, in contrast to biochemical nonspecific assays utilizing Ehrlich reagent11,12. At present, there are many methods available for kynurenines determination in human specimens, mainly based on liquid chromatography with ultraviolet or fluorescence detectors13,17,18,19. Liquid chromatography coupled with a mass spectrometry detector (LC-MS) seems more suitable for this type of analysis, due to their higher sensitivity (lower limits of detection), selectivity and repeatability.
Trp metabolites have already been determined in human serum, plasma and urine13,20,21,22,23, however, the methods for other biological specimens, like cell culture medium are also desired. Previously, LC-MS was used for Trp-derived compounds in a medium collected after culturing of human glioma cells, monocytes, dendritic cells or astrocytes treated with interferon gamma (IFN-γ)24,25,26. Currently, there is a need for new validated protocols that can allow an assessment of several metabolites in different culture media, cells, and treatments used in cancer models.
The purpose of the developed method is to quantify (within one analytical run) four major kynurenines that can indicate abnormalities in KP. Presented here are critical steps of our recently published protocol for quantitative LC-SQ analysis of selected meaningful kynurenines using one internal standard (3-nitrotyrosine, 3NT) in the medium collected from in vitro cultured human cancer cells27. To our best knowledge, it is the first LC-SQ protocol for simultaneous quantification of 3HKyn, 3HAA, Kyn and XA in a culture medium obtained from the in vitro grown cells. Upon some modifications, the method might be further applied to study the changes in Trp metabolism in a broader range of cell culture models.
Access restricted. Please log in or start a trial to view this content.
1. Preparation of standard 3NT, Kyn, 3HKyn, 3HAA, XA standard stock solutions
2. Preparation of charcoal treated culture medium
3. Making the calibration solutions and calibration curves
4. Preparation of quality control (QC) samples
5. Setting up the LC-MS system
6. Constructing the calibration curve
7. In vitro cell culture and sample collection for analysis
8. Prepare samples for LC-MS analysis
9. Assessing protein content and data normalization
Access restricted. Please log in or start a trial to view this content.
LC-MS presents indisputable advantages in the quantification of biologically active molecules, even though some components of complex specimens cause so-called matrix effects and compromise ionization of analytes. It leads to ion suppression or ion enhancement, strongly decreasing accuracy and affecting a limit of detection/quantification of LC-MS, which is considered as a ''weak” point of the method. In our protocol, the ions are generated by electrospray ionization (ESI) in the positive mode, which was al...
Access restricted. Please log in or start a trial to view this content.
This paper presents a detailed LC-SQ protocol for the simultaneous quantification of four major Trp metabolites (3HKyn, Kyn, 3HAA, XA) that are measured in a medium from in vitro cultured human cancer cells. Special attention is paid to the sample preparation, chromatographic/mass spectrometry procedure, and data interpretation, the most important points within the analysis.
In general, LC-MS analysis, due to high sensitivity, requires the highest standards of a protocol strictness an...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This work was supported by the European Union from European Regional Development Fund under the Operational Programme Development of Eastern Poland 2007-2013 (POPW.01.03.00-06-003/09-00), by Faculty of Biotechnology and Environmental Sciences of the John Paul II Catholic University of Lublin (Young Scientists grant for Ilona Sadok), Polish National Science Centre, OPUS13 (2017/25/B/NZ4/01198 for Magdalena Staniszewska, Principle Investigator). The authors thank Prof. Agnieszka Ścibior from the Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, JPII CUL for sharing the equipment for cell culturing and protein quantification.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
3-hydroksy-DL-kynurenina | Sigma-Aldrich | H1771 | |
3-hydroxyanthranilic acid | Sigma-Aldrich | 148776 | 97% |
3-nitro-L-tyrosine | Sigma-Aldrich | N7389 | |
Acetonitrile | Supelco | 1.00029 | hypergrade for LC-MS LiChrosolv |
Activated charcoal | Supelco | 05105 | powder |
Analytical balance | Ohaus | ||
Analytical column | Agilent Technologies | 959764-902 | Zorbax Eclipse Plus C18 rapid resolution HT (2.1 x 100 mm, 1.8 µm) |
Ammonium formate | Supelco | 7022 | eluent additive for LC-MS, LiChropur, ≥99.0% |
Bovine Serum Albumin | Sigma | 1001887398 | |
Caps for chromatographic vials | Agilent Technologies | 5185-5820 | blue screw caps,PTFE/red sil sepa |
Cell culture dish | Nest | 704004 | polystyrene, non-pyrogenic, sterile |
Cell culture plate | Biologix | 07-6012 | 12-well, non-pyrogenic, non-cytoxic, sterille |
Cell incubator | Thermo Fisher Scientific | HERAcell 150i Cu | |
Centrifuge | Eppendorf | model 5415R | |
Centrifuge | Eppendorf | model 5428 | |
Centrifuge tubes | Bionovo | B-2278 | Eppendorf type, 1.5 mL |
Centrifuge tubes | Bionovo | B-3693 | Falcon type, 50 mL, PP |
Chromatographic data acqusition and analysis software | Agilent Technologies | LC/MSD ChemStation (B.04.03-S92) | |
Chromatographic insert vials | Agilent Technologies | 9301-1387 | 100 µL |
Chromatographic vials | Agilent Technologies | 5182-0714 | 2 mL, clear glass |
Dimethyl sulfoxide | Supelco | 1.02950 | Uvasol |
Dubelcco’s Modified Eagle’s Medium (DMEM) | PAN Biotech | P04-41450 | |
Dual meter pH/conductivity | Mettler Toledo | SevenMulti | |
Evaporator | Genevac | model EZ-2.3 Elite | |
Fetal bovine serum | Sigma-Aldrich | F9665 | |
Formic acid | Supelco | 5.33002 | for LC-MS LiChropur |
Glass bottle for reagents storage | Bionovo | S-2070 | 50 mL, clear glass |
Guard column | Agilent Technologies | 959757-902 | Zorbax Eclipse Plus-C18 Narrow Bore Guard Column (2.1 x 12.5 mm, 5 µm) |
Hydrochloric acid | Merck | 1.00317.1000 | |
L-kynurenine | Sigma-Aldrich | K8625 | ≥98% (HPLC) |
Magnetic stirrer | Wigo | ES 21 H | |
Microbalance | Mettler Toledo | model XP6 | |
Milli-Q system | Millipore | ZRQSVPO30 | Direct-Q 3 UV with Pump |
Quadrupole mass spectrometer | Agilent Technologies | G1948B | model 6120 |
Penicillin-Streptomycin | Sigma-Adrich | 048M4874V | |
Plate reader | Bio Tek | Synergy 2 operated by Gen5 | |
Potassium chloride | Merck | 1.04936.1000 | |
Potassium dihydrogen phosphate | Merck | 1.05108.0500 | |
Protein Assay Dye Reagent Concentrate | BioRad | 500-0006 | |
See-saw rocker | Stuart | SSL4 | |
Serological pipette | Nest | 326001 | 5 mL, polystyrene, non-pyrogenic, sterile |
Sodium chloride | Sigma-Aldrich | 7647-14-5 | |
Sodium phosphate dibasic | Merck | 1.06346.1000 | |
Solvent inlet filter | Agilent Technologies | 5041-2168 | glass filter, 20 μm pore size |
Solvent reservoir (for LC-MS) | Agilent Technologies | 9301-6524 | 1 L, clear glass |
Solvent reservoir (for LC-MS) | Agilent Technologies | 9301-6526 | 1 L, amber glass |
Spreadsheet program | Microsoft Office | Microsoft Office Excel | |
Stir bar | Bionovo | 6-2003 | teflon coated |
Syringe filters for culture medium filtration | Bionovo | 7-8803 | regenerated cellulose, Ø 30 mm, 0,45 µm |
Syringe filters for mobile phase components filtration | Bionovo | 6-0018 | nylon, Ø 30 mm, 0,22 µm |
Tissue culture plates | VWR | 10062-900 | 96-wells, sterille |
Trypsin-EDTA Solution | Sigma-Aldrih | T4049-100 mL | |
Ultra-High Performance Liquid Chromatography system | Agilent Technologies | G1367D, G1379B, G1312B, G1316C | 1200 Infinity system consisted of autosampler (G1367D), degasser (G1379B), binary pump (G1312B), column thermostat (G1316C) |
Ultrasound bath | Polsonic | 104533 | model 6D |
Vortex | Biosan | model V-1 plus | |
Xanthurenic acid | Sigma-Aldrich | D120804 | 96% |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone