Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Detailed investigations on mosquito stages of malaria parasites are critical to design effective transmission blocking strategies. This protocol demonstrates how to effectively culture infectious gametocytes and then feed these gametocytes to mosquitoes to generate mosquito stages of P. falciparum.
Malaria remains one of the most important public health problems, causing significant morbidity and mortality. Malaria is a mosquito borne disease transmitted through an infectious bite from the female Anopheles mosquito. Malaria control will eventually rely on a multitude of approaches, which includes ways to block transmission to, through and from mosquitoes. To study mosquito stages of malaria parasites in the laboratory, we have optimized a protocol to culture highly infectious Plasmodium falciparum gametocytes, a parasite stage required for transmission from the human host to the mosquito vector. P. falciparum gametocytes mature through five morphologically distinct steps, which takes approximately 1-2 weeks. Gametocyte culture described in this protocol is completed in 15 days and are infectious to mosquitoes from days 15-18. These protocols were developed to maintain a continuous cycle of infection competent gametocytes and to maintain uninterrupted supply of mosquito stages of the parasite. Here, we describe the methodology of gametocyte culture and how to infect mosquitoes with these parasites using glass membrane feeders.
Malaria is caused by Plasmodium parasites and is transmitted to their vertebrate hosts via infectious bite of female Anopheles mosquitoes. According to the 2019 World Health Organization (WHO) report, there were an estimated 405,000 deaths, from a total of 228 million cases of malaria1. Most of the malaria related deaths were concentrated in the African region, especially among children below five years of age. While the overall incidence rate of malaria has declined globally from 2010, in recent years decline has plateaued and additional control strategies are urgently needed to eliminate the disease.
Cyclic asexual blood stages of malaria parasites cause disease pathogenesis and a small subset of these differentiate into female and male gametocytes. Plasmodium falciparum gametocytes are unique in nature as they take 7-10 days to develop through five morphologically distinct stages. Immature gametocytes from stage I to IV are sequestered in bone marrow parenchyma and largely remain absent from peripheral circulation2,3,4,5. Erythrocytes infected with mature stage V gametocytes are released in the bloodstream and freely circulate to be taken up by mosquitoes. Once inside the mosquito midgut, gametocytes are activated, through a change in temperature and exposure to the midgut environment, transform into female and male gametes and begin development of the mosquito stages, which culminates with the infective stages of sporozoites in the mosquito salivary glands6,7.
Since Trager and Jenson8 described a standardized method to culture P. falciparum, studies on the asexual blood stages have greatly advanced. However, the lack of a reliable culture system for sexual stages has made it difficult to study P. falciparum gametocytes, transmission biology and mosquito stages. In recent years, several methods have been published which have aided laboratories in establishing gametocyte cultures9,10,11,12. This manuscript describes standardized and reliable protocol to culture P. falciparum gametocytes that can represent a valuable resource for the malaria research community. This method enables the robust production of mature and infectious gametocytes which along with a standardized mosquito feeding protocol, results in highly reliable mosquito infectivity. These methods were established to maintain uninterrupted supply of gametocytes, and mosquito stage parasites. In this manuscript, we describe a thorough gametocyte culture protocol (Figure 1), preparation of glass membrane feeders and infection of mosquitoes using these membrane feeders (Figure 2), dissection of midgut (Figure 3) and salivary gland of mosquitoes (Figure 4), and quantification of infection in mosquito after midgut and salivary gland dissection.
Blood collections described below have been approved by the Institutional Review Board of Johns Hopkins University. P. falciparum is cultured in fresh RBCs under sterile conditions in a biosafety level 2 (BSL2) facility and caution is used to handle biological materials. After each step involving blood or blood products, every plasticware or glassware is rinsed with 10% bleach within the hood prior to proper disposal.
1. Reagents and preparation
2. P. falciparum asexual stage culture
3. P. falciparum gametocyte culture
NOTE: Gametocyte cultures take two weeks to produce mature gametocytes infectious to mosquitoes. The steps of the gametocyte culture are outlined in Figure 1. P. falciparum isolates usually lose the ability to produce gametocyte after long term in vitro culture13. To ensure quality of gametocytes, culture should be initiated from low passage feeder culture, not more than 2 months old since thawing. Pre-warm media to 37 °C and perform all the procedures on a slide warmer set at 38 °C. Make sure gametocyte cultures are not out of incubator for extended period to minimize temperature fluctuations.
4. Mosquito infection using standard membrane feeding assay (SMFA)
NOTE: Gametocytes grown in vitro can be fed to mosquitos using glass membrane feeders. Setting up of the blood feeding apparatus is shown in Figure 2. As described above, always maintain gametocytes at 37 °C to avoid activation before they are ingested by mosquitoes. Prewarm plasticware, reagents and equipment's used with gametocyte culture to 37 °C.
5. Mosquito mid-gut dissection and oocyst load quantification
NOTE: A schematic of midgut dissection is shown in Figure 3.
6. Mosquito salivary gland dissection and sporozoite load quantification
NOTE: A schematic of salivary gland dissection is shown in Figure 4.
Here we present results from a series of membrane feeds using P. falciparum NF54 gametocyte cultures generated using the protocol above (see (Figure 5). Gametocyte culture was initiated with approximately 0.5% mixed stage asexual culture on Day 0, which grew to a peak parasitemia of approximately 15% by Day 4 and Day 5. As shown in Figure 5A at this high parasitemia, the parasites are stressed and the asexual stage culture crashes. However, this stress ...
Methods described here have been successfully used at the Johns Hopkins Malaria Research Institute for more than 10 years15,16,17,18,19,20,21,22. Gametocytes produced using this protocol have been used for high throughput gametocytocidal assays
The Authors have nothing to disclose.
Authors thank Bloomberg Philanthropies for financial support to Johns Hopkins Malaria Research Institute (JHMRI). This work would not have been possible without the expertise provided by JHMRI insect and parasitology core facilities.
Name | Company | Catalog Number | Comments |
10% Sugar solution | |||
10ml serological pipet | Falcon | 357551 | |
15 ml conical tube | Falcon | 352096 | |
1ml serological pipet | Falcon | 357521 | |
25 ml serological pipet | Falcon | 357535 | |
37°C Incubator | |||
50 ml conical tube | Falcon | 352070 | |
5ml serological pipet | Falcon | 357543 | |
6 well tissue culture plates | Falcon | 353046 | |
70% Ethanol | |||
9" glass pipet | Fisherbrand | 13-678-6B | |
Anopheles Mosquitoes | JHMRI, Insectary core | We use A. stephensi or A. gambiae (keele) | |
cell counter | |||
Circulating water bath | |||
fine tip forceps | Fisherbrand | 12-000-122 | |
Geimsa stain | Sigma | GS1L | |
Glass desiccator | |||
Glass membrane feeder | Chemglass Life Sciences | CG183570 | |
Glass slides | Fisherbrand | 12-552-3 | |
HBSS | Sigma | H6648 | |
Human Blood O+ | JHU | Wash RBCs three times with RPMI and refrigerate at 50% heamatocrit | |
Human Serum O+ | Interstate blood bank | Pool at-least 6 units of serum from different donors and freeze down aliquots at -20°C. | |
Hypoxanthine | Sigma | H9337 | Make 500x stock in 1M NaOH |
Mercurochrome | Sigma | M7011 | Prepare 1% stock solution in PBS that can be diluted to 0.1% when needed |
Micro Pipette | |||
Microscope | Olympus | Any microscope with 10x, 40x and 100x objective will work. | |
Mosquito cups | Neptune cups | ||
N-acetylglucosamine | Sigma | A3286 | Optional and needed only when pure gametocytes are required. |
Netting | Make sure it can contain mosquitoes and allow blood feeding | ||
Parafilm | |||
PBS | |||
Petri dish | Thermo Scientific | 249964 | |
Pipet tips | |||
Pipetman | |||
Plasmodium falciparum NF54 | BEI Resources | MRA-1000 | Freeze down large numbers of early passage culture to make sure you have a constant supply |
RPMI 1640 | Corning | CV-041-CV | Media contains glutamine and HEPES |
Slide warmer | |||
Sodium bicarbonate | Sigma | S6297 | Optional for media, add only when using malaria gas mix during culture incubation |
water bath | |||
Xanthurenic Acid | Sigma | D120804 | For flagellation media |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone