Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
The paper is primarily focused on the combined power of optical (linear and nonlinear) and holographic methods used to reveal phenomena at the nanoscale. The results obtained from the biophotonic and oscillatory chemical reactions' studies are given as representative examples, highlighting holography's ability to reveal dynamics at a nanoscale.
In this method, the potential of optics and holography to uncover hidden details of a natural system's dynamical response at the nanoscale is exploited. In the first part, the optical and holographic studies of natural photonic structures are presented as well as conditions for the appearance of the photophoretic effect, namely, the displacement or deformation of a nanostructure due to a light-induced thermal gradient, at the nanoscale. This effect is revealed by real-time digital holographic interferometry monitoring the deformation of scales covering the wings of insects induced by temperature. The link between geometry and nanocorrugation that leads to the emergence of the photophoretic effect is experimentally demonstrated and confirmed. In the second part, it is shown how holography can be potentially used to uncover hidden details in the chemical system with nonlinear dynamics, such as the phase transition phenomenon that occurs in complex oscillatory Briggs-Rauscher (BR) reaction. The presented potential of holography at the nanoscale could open enormous possibilities for controlling and molding the photophoretic effect and pattern formation for various applications such as particle trapping and levitation, including the movement of unburnt hydrocarbons in the atmosphere and separation of different aerosols, decomposition of microplastics and fractionation of particles in general, and assessment of temperature and thermal conductivity of micron-size fuel particles.
To fully understand and notice all the unique phenomena in the nanoworld, it is crucial to employ techniques that are capable of revealing all details regarding structures and dynamics at the nanoscale. On this account, the unique combination of linear and nonlinear methods, combined with the power of holography to reveal the system's dynamics at the nanoscale are presented.
The described holographic technique can be viewed as the triple rec method (rec is the abbreviation for recording), since at a given time the signal is simultaneously recorded by a photographic camera, a thermal camera, and an interferometer. Linear and nonlinear optical spectroscopy and holography are well-known techniques, the fundamental principles of which are extensively described in the literature1,2.
To cut a long story short, holographic interferometry allows the comparison of wavefronts recorded at different moments in time to characterize the dynamics of the system. It was previously used to measure vibrational dynamics3,4. The power of holography as the simplest interferometry method is based on its ability to detect the smallest displacement within the system. First, we exploited holography to observe and reveal the photophoretic effect5 (i.e., the displacement of deformation of a nanostructure due to a light-induced thermal gradient), in different biological structures. For a true presentation of the method, representative samples were selected from a number of tested biological specimens6. Wings of the Queen of Spain fritillary butterfly, Issoria lathonia (Linnaeus, 1758; I. lathonia), were used in the framework of this study.
After having successfully demonstrated the occurrence of photophoresis at the nanoscale in biological tissues, a similar protocol was applied to monitor the spontaneous symmetry breaking process7 caused by a phase transition in an oscillatory chemical reaction. In this part, the phase transition from a low concentration of iodide and iodine (called state I) to a high concentration of iodide and iodine with solid iodine formation (defined as state II) that occurs in a chemically nonlinear BR reaction was studied8,9. Here, we reported for the first time a holographic approach that allows studying such a phase transition and spontaneous symmetry breaking dynamics at the nanoscale occurring in condensed systems.
1. Precharacterization
Figure 1: Wavy cross-section of butterfly wing scale. The cross-section was recorded on a nonlinear optical scanning microscope (A,B). A SEM observation (C) of a wing of the Queen of Spain fritillary butterfly, I. lathonia, was also done. This figure has been modified from14. Please click here to view a larger version of this figure.
2. Experimental setup
Figure 2: The holographic setup. The figure shows how the various components are arranged for the holographic experiment. Abbreviations: L1 = laser at 532 nm, L = biconvex lens, A = aperture, M = a flat mirror used to deflect the laser beam, CM = concave mirror, C = CMOS camera, S = butterfly wing section, R = reference beam, O = object beam. Please click here to view a larger version of this figure.
3. Setup of the software used
NOTE: Home-built C++ software based on Fresnel approximation11 is used to analyze data from holographic experiments. The software developed for the presented study can be found at .12 The details of software cannot be published at the moment; however, additional information will be provided on request. Fresnel approximation is extremely useful in digital holography since it focuses on different surfaces and zooms in on the area of the first diffraction order, which contains complete information about the recorded scene.
4. Perform the experiment
5. Acquisition of results12
6. Analyses of the results
A photophoretic effect was induced and monitored in a first experiment on the wing of a Morpho menelaus butterfly5. The effect was initiated by the action of LED lasers of different wavelengths (450 nm, 532 nm, 660 nm, and 980 nm). Here, the wings from an I. lathonia butterfly14 were used. After the recording procedure, the hologram image was reconstructed.
In the presented biophotonic study, it is shown that a novel holographic method can be used to detect minimal morphological displacement or deformation caused by low-level thermal radiation.
The most critical step in holographic measurement with biological samples is the preparation step. The preparation of the sample (cutting/gluing to match the size of the holder) depends on the sample's mechanical properties, and it is not possible to have a standard protocol for this step.
The authors declare no conflict of interests.
M. S. P., D. G., D. V., and B. K. acknowledge support of the Biological and bioinspired structures for multispectral surveillance, funded by NATO SPS (NATO Science for Peace and Security) 2019-2022. B. K., D. V., B. B., D. G., and M. S. P. acknowledge funding provided bythe Institute of Physics Belgrade, through the institutional funding bythe Ministry of Education, Science, and Technological Development of theRepublic of Serbia. Additionally, B. K. acknowledges support from F R S - FNRS. M. P. acknowledges support from the Ministry of Education, Science and Technological Development of the Republic of Serbia, Contract number 451-03-9/2021-14/200026. S. R. M. was supported by a BEWARE Fellowship of the Walloon Region (Convention n°2110034), as a postdoctoral researcher. T. V. acknowledges financial support from the Hercules Foundation. D.V., M.S.P., D.G., M.P., B.B., and B.K. acknowledge the support of the Office of Naval Research Global through the Research Grant N62902-22-1-2024. This study was conducted in partial fulfillment of the requirements for the PhD degree of Marina Simović Pavlović at the University of Belgrade, Faculty of Mechanical Engineering.
Name | Company | Catalog Number | Comments |
Active Vibration Isolation, Four Optical Table Supports | Thorlabs | PTR502 | High Load Capacity: 2,500 kg, Height 600 mm |
Cuvette | Standard glass cuvette | ||
Holographic camera (optical camera for holography) | Cannon | EOS 50D | Sensor Size 22.3 x 14.9 mm; Pixel pitch 4.69 µm; Max. resolution 4752 x 3168; JPEG file format |
Hydrogen peroxide, H2O2 | Merck (Darmstadt, Germany) | ||
Laser | Laser Quantum | Torus 532 laser | Wavelength 532 nm; Power 390 mW; Coherence length 10 m |
LED lasers | |||
Malonic acid, C3H4O4 | Acr![]() | ||
Manganese sulphate, MnSO4 | Fluka (Buchs, Switzerlend) | ||
Nonlinear optical microscope | IPB | ||
Optical accessories | Thorlab | ||
Optical spectroscope | |||
Optical table | Thorlabs | TOP450II PTR52509 | dimensions 2000*1250*310 mm |
Perchloric acid, HClO4 | Merck (Darmstadt, Germany) | ||
Potassium iodate, KIO3 | Merck (Darmstadt, Germany) | ||
Software | Home-build software made by one of the authors: Dusan Grujic. This software was conducted in partial fulfillment of the requirements for the PhD deegree of D.G. | ||
Thermal camera | Flir | A65 | 640x512 pixel; Thermal resolution 50 mK |
Video camera | Nikon | 1v3 | 18.4 Mpixel; 60 fps |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone