Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

Here, we present a protocol for a mouse model of noise-induced hearing loss (NIHL). To induce NIHL, we developed a new and simple device using corrugated plastic, a rat trap cage, and a speaker. Auditory brainstem response and immunofluorescence imaging were employed to assess the hearing function and outer hair cell damage, respectively.

Streszczenie

An animal model of noise-induced hearing loss (NIHL) is useful for pathologists, therapists, pharmacologists, and hearing researchers to thoroughly understand the mechanism of NIHL, and subsequently optimize the corresponding treatment strategies. This study aims to create an improved protocol for developing a mouse model of NIHL. Male C57BL/6J mice were used in this study. Unanesthetized mice were exposed to loud noises (1 and 6 kHz, presented simultaneously at 115-125 dB SPL-A) continuously for 6 h per day for 5 consecutive days. Auditory function was assessed 1 day and 1 week after noise exposure, using auditory brainstem response (ABR). After the ABR measurement, the mice were sacrificed, and their organs of Corti were collected for immunofluorescence staining. From the auditory brainstem response (ABR) measurements, significant hearing loss was observed 1 day after noise exposure. After 1 week, the hearing thresholds of the experimental mice decreased to ~80 dB SPL, which was still a significantly higher level than the control mice (~40 dB SPL). From the results of immunofluorescence imaging, outer hair cells (OHCs) were shown to be damaged. In summary, we created a model of NIHL using male C57BL/6J mice. A new and simple device for generating and delivering pure-tone noise was developed and then employed. Quantitative measurements of hearing thresholds and morphological confirmation of OHC damage both demonstrated that the applied noise successfully induced an expected hearing loss.

Wprowadzenie

About 1.3 billion people worldwide suffer from hearing loss due to noise exposure1. In this study, we aimed to establish a clear step-by-step process for inducing and confirming noise-induced hearing loss (NIHL). NIHL results from a degeneration/destruction of the hair cells (HCs) and spiral ganglion neurons (SGNs), damage in the HC stereocilia, and/or loss of synapses between the cochlear inner HCs and SGNs. Such abnormalities may also cause tinnitus and impaired speech perception (especially in a complex acoustic environment) besides NIHL. Social, psychological, and cognitive functions may be sequentially affected by these physiological defic....

Protokół

Animal experiments in this study were approved by the Animal Care Committee of Mackay Medical College. Eight-week-old Male C57BL/6J mice were purchased from the National Laboratory Animal Center (New Taipei City, Taiwan). All mice were bred and housed in accordance with the standard animal protocol.

1. Induction of NIHL in mice

  1. Prepare the cage for the experimental mice
    1. To do so, use a rat trap cage with dimensions of 14 cm × 17 cm × 24 cm. Cut four pieces of corrugated plastic boards into appropriate sizes, making them fit into the cage (13 cm × 23 cm and 13 cm × 16 cm).
    2. <....

Wyniki

A shift in ABR hearing threshold
The hearing threshold of the mice was measured using tone-burst ABR either 1 day or 1 week after the noise exposure. A significant increase in the hearing threshold at all three tested frequencies was observed (12 kHz: 84.29 ± 2.77 dB SPL; 24 kHz: 91.43 ± 0.92 dB SPL; 32 kHz: 98.57 ± 1.43 dB SPL) 1 day after the noise exposure (i.e., the 6th day). Partial hearing recovery occurred 1 week after the noise exposure (i.e., the 13th d.......

Dyskusje

NIHL can be divided into two types: temporary NIHL, which shows a temporal shift of the hearing threshold, and permanent NIHL, which is featured by a permanent hearing-threshold shift. The hearing loss that we observed on the 6th day (1 day after the noise exposure) is believed to be a combination of these two types. In this case, the hearing threshold would show a gradual recovery over time owing to the temporal component of hearing loss. In our preliminary experimental studies, the results acquired with the .......

Ujawnienia

No conflict of interest to disclose.

Podziękowania

We thank the grants from the Ministry of Science and Technology (MOST) of the Taiwan Government (MOST 110-2314-B-715-005, MOST 111-2314-B-715-009-MY3), and intramural research grants from Mackay Medical College (MMC-RD-110-1B-P030, MMC-RD-111-CF-G002-03).

....

Materiały

NameCompanyCatalog NumberComments
 1/4" CCP Free-field Standard Microphone SetGRAS428158For noise exposure
Amplifier Input Module, AMI100DBIOPACFor auditory brainstem response
Bio-amplifier, BIO100CBIOPACFor auditory brainstem response
Bovine Serum AlbuminSIGMAA9647Immunofluorescence staining
Cellsens softwareOlympus life scienceImage acquisition
Corrugated plastic
DAPI fluoromountSouthernBiotech0100-20Immunofluorescence staining
Ethylenediaminetetraacetic acidSIGMAE5134Decalcification
Evoked Response Amplifier, ERS100CBIOPACFor auditory brainstem response
FormaldehydeAPLHAF030410Fixation of cochlear
High Performance Data Acquisition System, MP160BIOPACFor auditory brainstem response
Modular Extension Cable, MEC110CBIOPACFor auditory brainstem response
Myo7A primary antibodyProteus25-6790Immunofluorescence staining
Myo7A secondary antibodyJackson immunoresearch711-545-152Immunofluorescence staining
Needle Electrode, Unipolar 12 mmTp, EL452BIOPACFor auditory brainstem response
phalloidin antibodyAlexa FluorA12381Immunofluorescence staining
phosphate-buffered salineSIGMAP4417
Rat trap cage14 cm x 17 cm x 24cm
ROMPUN- xylazine injection, solution Bayer HealthCare, LLC
Sound amplifier, MT-1000unikaFor noise exposure
Sound generator/analyzer/miscellaneous, FW-02CLIO620300719For noise exposure
Soundproof chamberIEA Electro-Acoustic TechnologyFor noise exposure and ABR
Speaker IEA Electro-Acoustic TechnologyFor noise exposure
Stimulator Module, STM100CBIOPACFor auditory brainstem response
Triton X-100SIGMAT8787Immunofluorescence staining
Tubephone Set, OUT101BIOPACFor auditory brainstem response
Upright Microscope, BX53OlympusImage acquisition
ZoletilVirbac

Odniesienia

  1. World Report on Hearing. World Health Organization Available from: https://www.who.int/publications/i/item/9789240020481 (2021)
  2. Fernandez, K. A., et al. Noise-induced cochlear synaptopathy with and without sensory cell loss. Neuroscience. 427, 43-57 (2020).
  3. Kujawa, S. G., Liberman, M. C.

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Noise induced Hearing LossMice ModelAuditory Brainstem Response ABRExperimental ProcedureHearing ThresholdsOuter Hair Cell DamageSound ExposureC57BL 6J MiceSoundproof BoxNoise CalibrationDecibels SPL AFrequency SettingsCage PreparationTreatment Strategies

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone