Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Tyramide signal amplification during immunofluorescent staining enables the sensitive detection of phosphorylated RIPK3 and MLKL during ZBP1-induced necroptosis after HSV-1 infection.
The kinase Receptor-interacting serine/threonine protein kinase 3 (RIPK3) and its substrate mixed lineage kinase domain-like (MLKL) are critical regulators of necroptosis, an inflammatory form of cell death with important antiviral functions. Autophosphorylation of RIPK3 induces phosphorylation and activation of the pore-forming executioner protein of necroptosis MLKL. Trafficking and oligomerization of phosphorylated MLKL at the cell membrane results in cell lysis, characteristic of necroptotic cell death. The nucleic acid sensor ZBP1 is activated by binding to left-handed Z-form double-stranded RNA (Z-RNA) after infection with RNA and DNA viruses. ZBP1 activation restricts virus infection by inducing regulated cell death, including necroptosis, of infected host cells. Immunofluorescence microscopy permits the visualization of different signaling steps downstream of ZBP1-mediated necroptosis on a per-cell basis. However, the sensitivity of standard fluorescence microscopy, using current commercially available phospho-specific antibodies against human RIPK3 and MLKL, precludes reproducible imaging of these markers. Here, we describe an optimized staining procedure for serine (S) phosphorylated RIPK3 (S227) and MLKL (S358) in human HT-29 cells infected with herpes simplex virus 1 (HSV-1). The inclusion of a tyramide signal amplification (TSA) step in the immunofluorescent staining protocol allows the specific detection of S227 phosphorylated RIPK3. Moreover, TSA greatly increases the sensitivity of the detection of S358 phosphorylated MLKL. Together, this method enables the visualization of these two critical signaling events during the induction of ZBP1-induced necroptosis.
Receptor-interacting serine/threonine protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) are central regulators of necroptotic cell death1,2. Necroptosis is a lytic and inflammatory form of regulated cell death involved in antiviral immunity and autoinflammation. Necroptosis of virus-infected cells immediately shuts down virus replication. Cell lysis following necroptosis induction also releases damage-associated molecular patterns, which stimulate antiviral immunity3,4. Necroptosis is initiated by the activation of RIPK3 following RIP homotypic interaction motif (RHIM)-mediated interactions with one of three upstream activating molecules: RIPK1 (upon TNF receptor 1 [TNFR1] engagement), TIR-domain-containing adapter-inducing interferon-β (TRIF; upon Toll-like receptor 3 and 4 engagement), or the antiviral nucleic acid sensor Z-DNA binding protein 1 (ZBP1)1,2. Necroptosis signaling proceeds through a series of phosphorylation events beginning with the autophosphorylation of RIPK3. The autophosphorylation of human RIPK3 at serine (S)227 inside its kinase domain is a prerequisite for necroptosis by enabling the interaction with MLKL and is commonly used as a biochemical marker for human RIPK3 activation and necroptotic cell death1,5. Once activated, RIPK3 phosphorylates the activation loop of MLKL at threonine (T)357 and S3581. This causes a change in MLKL conformation, resulting in exposure of the N-terminal four helix bundle domain. MLKL then oligomerizes and traffics to the cell membrane where it forms a pore through the insertion of the exposed four helix bundles in the lipid bilayer, eventually leading to cell death2,6.
ZBP1 is an antiviral nucleic acid sensor that recognizes left-handed Z-form nucleic acids including double-stranded RNA in the Z-conformation (Z-RNA). Z-RNA binding occurs via two Zα-domains positioned at the N-terminus of ZBP1. Z-RNA accumulating during RNA and DNA virus infection is thought to directly engage ZBP17,8. Activated ZBP1 recruits RIPK3 through its central RHIMs and induces regulated cell death, including necroptosis9,10. Viruses have adopted numerous escape mechanisms to counteract ZBP1-induced host cell necroptosis11. For example, the herpes simplex virus 1 (HSV-1) ribonucleotide reductase subunit 1, known as ICP6 and encoded by UL39, harbors RHIM at its N-terminus that interferes with ZBP1-mediated RIPK3 activation in human cells12,13,14,15. ZBP1 not only restricts viral replication, but mouse studies have shown that ZBP1 activation causes inflammatory diseases and stimulates cancer immunity16,17,18,19,20,21. Protocols that detect signaling events occurring during ZBP1-induced necroptosis in human cells are, therefore, valuable to assess the role of ZBP1 in these processes.
Tyramide signal amplification (TSA), also referred to as catalyzed reporter deposition (CARD), has been developed to improve the limit of detection and signal-to-noise ratio in antibody-based immunoassays. During TSA, any primary antibody can be used to detect the antigen of interest. Horseradish peroxidase (HRP), coupled to a secondary antibody, catalyzes the local build-up of biotinylated tyramide radicals in the presence of hydrogen peroxide. These activated biotin-tyramide radicals then react with proximal tyrosine residues to form covalent bonds. Potential tyramide-biotin substrates include the antigen itself, the primary and secondary antibodies, and neighboring proteins. Thus, while TSA significantly improves the sensitivity of the assay, some of its spatial resolution is lost. In a final step, biotin molecules are detected using fluorescently labeled streptavidin. The HRP reaction deposits many tyramide-biotin molecules on or near the antigen of interest. This greatly increases the number of streptavidin-fluorochrome binding sites, thereby greatly amplifying the sensitivity of the assay (Figure 1). Alternatively, tyramide can be directly coupled to a fluorochrome, eliminating the need for streptavidin-coupled fluorophores. Protein immunohistochemistry and DNA/RNA in situ hybridization were among the first methods whereby TSA was employed to improve signal intensities22,23. More recently, TSA has been combined with intracellular flow cytometry24 and mass spectrometry25.
Here, we present a protocol to detect serine 227 phosphorylated human RIPK3 (p-RIPK3 [S227]) and phosphorylated human MLKL (p-MLKL [S358]) upon the activation of ZBP1 by HSV-1 infection using immunofluorescence microscopy. We use a necroptosis-sensitive HT-29 human colorectal adenocarcinoma cell line that was transduced to stably express human ZBP1. These cells were infected with an HSV-1 strain expressing a mutant ICP6 protein (HSV-1 ICP6mutRHIM) in which four core amino acids within the viral RHIM (VQCG) were replaced by alanines (AAAA), thereby rendering the ICP6 unable to block ZBP1-mediated necroptosis13,14,15. To overcome the problem of the low signal-to-noise ratio of the currently commercially available antibodies directed against p-RIPK3 and p-MLKL in immunostaining26, we perform a tyramide signal amplification (TSA) step (Figure 1), which results in the robust detection of human p-RIPK3 (S227) and improves the detection sensitivity of human p-MLKL (S358) by an order of magnitude.
1. Preparation of biotinylated tyramide
2. Maintaining HT-29 cells in culture
NOTE: ZBP1-expressing HT-29 were generated by transduction with a lentivector27 encoding human ZBP1.
3. Starting the experiment, seeding, and stimulation of the cells
4. Fixing the cells
5. Permeabilization and primary staining
6. Tyramide signal amplification (TSA)
7. Fluorophores
NOTE: Since the signal of the primary antibody is converted to a biotin-group, p-MLKL (S358) and p-RIPK3 (S227) are visualized using streptavidin coupled to a fluorophore (fluorophore 568, dilution: 1:500). Additionally, the nuclei are stained with DAPI (5 µg/mL). If a viral protein is included in the staining protocol, include a suitable fluorescently labeled secondary antibody against the host species of your primary antibody. In the representative results, a mouse anti-ICP0 was used. As a secondary antibody goat anti-mouse coupled to fluorophore 633 (dilution: 1:1,000) was included.
8. Imaging using a confocal microscope
Track | Laser | Beam splitter | Filter |
pRIPK3 (S227) /pMLKL (S358) | 561 | MBS -405 + | BP 570-620 + LP645 |
MBS 488/561/633 + SBS SP615 | |||
Viral Gene: ICP0 | 633 | MBS -405 + | BP 420-480 + LP605 |
MBS 488/561/633 + SBS LP570 | |||
Nucleus: DAPI | 405 | MBS -405 + | BP 420-480 + BP 495-550 |
MBS 488/561/633 |
Table 1: Imaging tracks for cell visualization.
9. Data analysis and quantification
The immunofluorescent detection of MLKL phosphorylation and especially RIPK3 phosphorylation in human cells is technically challenging26. We here present an improved staining protocol for human p-RIPK3 (S227) and p-MLKL (S358) upon the activation of ZBP1. The protocol includes a TSA step to improve the detection limit and sensitivity of the fluorescent signals. To validate the method, a side-by-side comparison of the TSA-mediated immunofluorescence with standard indirect fluorescent staining of bo...
This immunofluorescent staining protocol describes the use of tyramide signal amplification (TSA) to increase the sensitivity for signaling events of the human necroptotic signaling pathway that are difficult to detect, including the phosphorylation of RIPK3 and MLKL26. The inclusion of a TSA step significantly improves the detection threshold of p-RIPK3 (S227) and p-MLKL (S358) and increases the sensitivity of p-MLKL (S358) straining. TSA revealed a p-RIPK3 (S227) signal already present in the mo...
The authors have nothing to disclose.
We would like to thank the VIB Bioimaging Core for training, support, and access to the instrument park. J.N. is supported by a PhD fellowship from the Research Foundation Flanders (FWO). Research in the J.M. group was supported by an Odysseus II Grant (G0H8618N), EOS INFLADIS (40007512), a junior research grant (G031022N) from the Research Foundation Flanders (FWO), a CRIG young investigator proof-of-concept grant, and by Ghent University. Research in the P.V. group was supported by EOS MODEL-IDI (30826052), EOS INFLADIS (40007512), FWO senior research grants (G.0C76.18N, G.0B71.18N, G.0B96.20N, G.0A9322N), Methusalem (BOF16/MET_V/007), iBOF20/IBF/039 ATLANTIS, Foundation against Cancer (F/2016/865, F/2020/1505), CRIG and GIGG consortia, and VIB.
Name | Company | Catalog Number | Comments |
Antibodies | |||
Anti-rabbit HRP | Agilent Technologies Belgium | K4002 | Envision+ System-HRP Labelled Polymer anti-rabbit |
Goat anti-mouse DyLight 633 | Thermofisher | 35513 | Secundary antibody |
HSV-1 ICP0 | Santa Cruz | sc-53070 | Mouse anti-ICP0(HSV-1) antibody |
IAV-PR8 mouse serum | In house production | xx | Mouse anti-IAV-PR8 polyclonal antibody |
pMLKL | Abcam | ab187091 | Rabbit anti-MLKL-phospho S358 antibody |
pRIPK3 | Abcam | ab209384 | Rabbit anti-RIPK3-phospho S227 antibody |
Fluorophores | |||
DAPI | Thermofisher | D21490 | To visualise the nucleus of the cells |
Streptavidin coupled to Alexa Fluor 568 | Thermofisher | S11226 | To visulalise biotin molecules |
Compounds | |||
30% H2O2 | Sigma | H1009 | Oxidising substrate, necessary for HRP activity |
4% PFA | SANBIO | AR1068 | To fix/crosslink the cells |
Biotinyl-tyramide | R&D Systems | 6241 | To amplify signal, HRP substrate |
BV-6 | Selleckchem | S7597 | BV6 IAP Inhibitor |
For cell culture: to detach the cells | |||
8.0 g/L NaCl | |||
0.4 g/L disodium salt of EDTA | |||
EDTA 0.04% | In house formulation | 1.1 g/L Na2HPO4 | |
0.2 g/L NaH2PO4 | |||
0.2 g/L KCl | |||
0.2 g/L Glucose | |||
Fetal Bovine serum | TICO | FBS EU XXX | For cell culture, maintaining cell culture; lot number: 90439 |
GSK'840 | Aobious | AOB0917 | RIPK3 kinase inhibitor |
L-Glutamine | Sigma-Aldrich | G7513 | For cell culture, maintaining cell culture |
MAXblock | Active Motif | 15252 | Blocking solution |
PBS | Gibco | 10444402 | |
Sodium pyruvate | Sigma-Aldrich | S8636 | For cell culture, maintaining cell culture |
TNF-α | In house production | - | Signaling molecule, able to trigger cell death in combination with BV6 and zVAD |
Triton X-100 | Sigma Aldrich | T8787-50ML | To permeabilise the cells |
Trypan blue | Merck | 11732 | For cell counting, used as live/dead marker at 0,1% |
Trypsine | Sigma-Aldrich | T4424 | For cell culture: to detach the cells |
zVAD | Bachem | BACE4026865.0005 | Z-Val-Ala-DL-Asp-fluoromethylketone |
Material | |||
µ-Slide 8 well high glass bottom | iBidi | 80807 | To culture the cells |
Cotton Preping Balls-size medium | Electron Microscopy Sciences | 71001-10 | To clean the objectives |
Immersol 518 F / 30 °C | ZEISS | 444970-9000-000 | To visualise the sample at high magnifications |
Lens Cleaner | ZEISS | 000000-0105-200 | To clean the objectives |
LSM880 Fast Airyscan confocal microscope | To visualise the sample | ||
Software | |||
Excel | Office | xx | To process the data |
Prism 9 | Graphpad | xx | To analyse the data- statistical testing and graph generation |
Volocity 6.3 | Volocity | xx | To perform quantifications |
Zen black | ZEISS | xx | To aquire and process images |
Zen blue | ZEISS | xx | To visualise images |
Viruses | |||
HSV-1 (mutRHIM) F strain | produced by Dr. Jiahuai Han | in house replication | HSV-1 as a trigger for necroptosis; RHIM core domain of UL39/ICP6 is mutated (VQCG>AAAA) |
HSV-1 (WT) F strain | Produced by Dr. Jiahuai Han | in house replication | HSV-1 (WT) as a negative control for necroptosis induction (ICP6 inhibition) |
IAV PR8 | in house stock | in house replication | IAV as a trigger for necroptosis |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone