PDMS Device Fabrication and Surface Modification
Cell Capture Using a Microfluidic Device
Development of New Therapeutic Applications Using Microfluidics
Perfusion decellularization is a novel technique to produce whole liver scaffolds that retains the organ's extracellular matrix composition and microarchitecture. Herein, the method of preparing whole organ scaffolds using perfusion decellularization and subsequent repopulation with hepatocytes is described. Functional and transplantable liver grafts can be generated using this technique.
Here we present a protocol describing oxygenated ex situ machine perfusion of donor liver grafts. This article contains a step by step protocol to procure and prepare the liver graft for machine perfusion, prepare the perfusion fluid, prime the perfusion machine and perform oxygenated normothermic machine perfusion of the liver graft.
We describe a method of ex vivo machine perfusion of human liver grafts at subnormothermic temperature (21 °C).
Here we present a protocol to build a rapid Brillouin spectrometer. Cascading virtually imaged phase array (VIPA) etalons achieve a measurement speed more than 1,000 times faster than traditional scanning Fabry-Perot spectrometers. This improvement provides the means for Brillouin analysis of tissue and biomaterials at low power levels in vivo.
This manuscript describes an ice-free cryopreservation method for large quantities of rat hepatocytes whereby primary cells are pre-incubated with cryoprotective agents at a low concentration and vitrified in large droplets.
This paper presents a partial heterotopic osteomyocutaneous flap transplantation protocol in rats and its potential outcomes in the mid-term follow-up.
SOBRE A JoVE
Copyright © 2024 MyJoVE Corporation. Todos os direitos reservados