É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Este manuscrito descreve um método de CRISPR-Cas9-baseado em cluster regularmente intercaladas curta palíndromo repete (CRISPR) para investigação célere e simples do papel dos vários genes candidatos na proliferação de células de leucemia mieloide aguda (LMA) em paralelo. Esta técnica é escalável e pode ser aplicada em outras linhas de células de câncer também.
Estudos de perturbação do gene têm sido amplamente utilizados para investigar o papel dos genes individuais na patogênese da LMA. Para alcançar a interrupção completa do gene, muitos desses estudos fizeram uso de modelos de complexo gene nocaute. Enquanto estes estudos com camundongos knockout para oferecer um sistema elegante e já testado para investigar as relações genótipo-para-fenótipo, um método rápido e escalável para avaliar genes candidatos que jogar um papel na proliferação celular de LMA ou sobrevivência em modelos de LMA ajudará a acelerar o interrogatório paralelo de múltiplos genes candidatos. Recentes avanços em tecnologias de edição de genoma melhoraram drasticamente nossa capacidade de executar perturbações genéticas em uma escala sem precedentes. Um tal sistema de edição de genoma é o método CRISPR Cas9-baseada que pode ser usado para fazer alterações rápidas e eficazes no genoma de célula de destino. A facilidade e a escalabilidade do gene-exclusão CRISPR/Cas9-mediada torna uma das técnicas mais atraentes para o interrogatório de um grande número de genes em ensaios fenotípicos. Aqui, apresentamos um ensaio simples usando CRISPR/Cas9 mediada gene-interrupção combinado com alta produtividade fluxo cytometry-concorrência baseada nos ensaios para investigar o papel dos genes que podem desempenhar um papel importante na proliferação ou sobrevivência de humanos e linhas de célula murino AML.
Nas últimas décadas tem visto inúmeros esforços de pesquisa focados em identificar a contribuição das principais vias moleculares na patogênese da leucemia mieloide aguda (LMA). Tradicionalmente, gene-interrupção nas células da LMA foi realizado utilizando camundongos knockout condicional ou RNA curto-gancho de cabelo (shRNA). Enquanto ratos do KO oferecem um sistema sofisticado para controle espaço-temporal de gene-exclusão, gerar os ratos nocaute do gene é trabalhoso, demorado e caro. Além disso, gene-nocautes usar estratégias de recombinação não é facilmente escalável; Estas estratégias não se prestam bem para o interrogatório de vários genes em paralelo. Após a descoberta de métodos de interferência do RNA de mRNAs endógenos de knock-down usando o RNA de interferência pequeno (siRNA) ou shRNA, muitos grupos começaram a usar técnicas de interferência do RNA para investigar o papel de genes específicos na LMA. Desde que as células de LMA murino e humanas são notoriamente difíceis de transfect usando métodos tradicionais baseados em lipídios transfeccao, maioria estuda shRNA trabalhador assalariado, lentivirally ou retrovirally-codificado para estudar a função dos genes em células de LMA. A recente descoberta do cluster regularmente intercaladas curtas palíndromos repetições (CRISPR) e as associado nucleases de Cas (CRISPR-Cas9) revolucionou a gene-alvo tecnologias1,2,3. Usando CRISPR-Cas9, genes específicos ou regiões genômicas podem ser excluídas, edição ou marcadas com facilidade e eficiência. CRISPR Cas9-gene-edição baseada está a emergir como o método de escolha para investigar relações genótipo-para-fenótipo em tipos de células diferentes devido a simplicidade, eficácia e ampla aplicabilidade desta técnica. Métodos baseados em CRISPR-Cas9 também estão se tornando o método de escolha na LMA, não só para interrogar os genes individuais, mas também como uma maneira de atingir múltiplos genes na matriz ou em pool genéticos telas destinadas a investigar vários genes em paralelo como potencial AML-dependências4,5,6.
Este manuscrito, descrevemos um ensaio de crescimento competitivo simples para medir o impacto do gene-perturbação no crescimento de células da LMA, com base em estável CRISPR Cas9-mediada por gene-edição seguido por citometria de fluxo elevado-throughput. Este método é simples, eficiente e escalável para médio-taxa de transferência experiências para investigar o papel de vários genes em paralelo nas células da LMA.
1. gerar Clones de linha celular AML com alta expressão de Cas9 estável e ativo
2. clonagem e transdução de sgRNAs nas células da LMA-Cas9
3. ensaio de crescimento competitiva
Em nosso estudo, nós primeiro transfectadas MOLM13 humana AML linhagem celular que leva a translocação de MLL-AF9 com vírus de alta-Título codificação o plasmídeo de Lentivirus Cas9-blasticidin. Em nossas mãos, em massa de células de MOLM13-Cas9 não seleccionadas não exibir alto nível Cas9 expressão pela mancha ocidental e também não executou bem quando analisada por gene eficiente edição-usando o método descrito anteriormente7. Por conseguinte, ...
Este manuscrito, descrevemos um protocolo detalhado para a realização de um ensaio de crescimento competitivo CRISPR-Cas9-baseado para investigar o papel de genes candidatos em linhas de células de LMA usando citometria de fluxo em células de LMA murino/humano (Figura 5). O objetivo do ensaio é identificar o efeito de supressão do gene na manutenção da proliferação celular AML mais de duas a três semanas em uma escala de rendimento médio. Alguns passos críticos precisam ser segu...
A.J.D é consultor de fármacos A2A (Nova Jersey) e Salgomed Therapeutics (San Diego). Outros autores não têm nenhum conflito para declarar.
O plasmídeo pCW-Cas9 foi um presente de Eric Lander & David Sabatini (plasmídeo Addgene # 50661) e o pKLV2-U6gRNA5 (BbsI) - PGKpuro2ABFP - plasmídeo W do laboratório Yusa (plasmídeo Addgene #67974. Gostaríamos de agradecer o núcleo de citometria de fluxo no SBP Medical Discovery Institute ajuda oportuna com análise de fluxo e triagem. Nós gostaríamos de reconhecer o apoio da Fundação Memorial Lady Tata a A.D. Gostaríamos de agradecer também o apoio das seguintes fontes de financiamento: NIH/ICN P30 CA030199 Cancer Center patrocinado Grant, a V-Fundação e centros de câncer NCI de San Diego (C3) #PTC2017to A.J.D.
Name | Company | Catalog Number | Comments |
FLAG-M2 Antibody | sigma-aldrich | F3165, lot # SLBS3530V | |
Anti-mouse Antibody | Invitrogen | 31446, lot # TA2514341 | |
SuperSignal West Femto Maximum Sensitivity Substrate | Thermo Fisher | 34095 | |
ChemiDoc Imaging System | BIO RAD | 17001401 | |
Sorvall Legend RT centrifuge | Thermo Scientific | ||
Blasticidin | Thermo Fisher | R21001 | |
SYTOX Red | Thermo Fisher | S34859 | |
Opti-MEM | Thermo Fisher | 31985062 | |
DMEM | Thermo Fisher | 11965-092 | |
RPMI | Thermo Fisher | 11875-093 | |
Penicillin-Streptomycin | Thermo Fisher | 15140122 | |
L-Glutamine (200 mM) | Thermo Fisher | 25030081 | |
Fetal Bovine Serum (FBS) | SAFC | 12303C | |
single gRNA vector | Addgene #67974 | pKLV2-U6gRNA5(BbsI)-PGKpuro2ABFP-W | |
CelLytic Nuclear extraction kit | sigma-alorich | NXTRACT | |
XtremeGENE 9 | sigma-alorich | 6365787001 | |
Retronectin | Takara | T100B | |
Flow cytometer | BD Biosciences | ||
T4 PNK | NEBioLabs | M0201S | |
T4 DNA ligation buffer | NEBioLabs | B0202S | |
T4 DNA Ligase enzyme | NEBioLabs | M0202S | |
Ampicillin | Fisher scientific | BP1760-25 | |
LB agar | Fisher scientific | BP9724-500 | |
LB Broth | Fisher scientific | BP9731-500 | |
Qiagen mini-prep kit | Qiagen | 27104 | |
NanoDrop Spectrophotometer | Thermo Fisher | NanoDrop One | |
Recombinant Murine IL-3 | Peprotech | 213-13 | |
Recombinant Murine IL-6 | Peprotech | 216-16 | |
Recombinant Murine M-CSF | Peprotech | 315-02 | |
Stable competent cells | NEBiolabs | C3040I | |
10 cm Tissue Culture dishes | Fisher Scientific | 353003 | |
Cell lysis solution | Qiagen | 158906 | |
Protein precipitation solution | Qiagen | 158910 | |
DNA hydration solution | Qiagen | 158914 | |
QIAquick Gel Extraction Kit | Qiagen | 28704 | |
BbSI | New England BioLabs | R0539S | |
APEX 2.0 X Taq Red Master Mix Kit | Genessee Scientific | 42-138 | |
Puromycin | Fisher scientific | BP2956100 | |
50 mL polypropylene conical tubes | Fisher scientific | 1495949A | |
15 mL polypropylene conical tubes | Fisher scientific | 1495970C |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados