Method Article
Antibióticos fluorescentes são ferramentas poderosas que podem ser usadas para estudar múltiplos aspectos da resistência antimicrobiana. Este artigo descreve a preparação de antibióticos fluorescentes e sua aplicação para estudar a resistência a antibióticos em bactérias. As sondas podem ser usadas para estudar mecanismos de resistência bacteriana (por exemplo, efflux) por espectrofotometria, citometria de fluxo e microscopia.
Antibióticos fluorescentes são ferramentas de pesquisa multiuso que são prontamente utilizadas para o estudo da resistência antimicrobiana, devido à sua vantagem significativa sobre outros métodos. Para preparar essas sondas, os derivados azidas de antibióticos são sintetizados, em seguida, juntamente com alquine-fluoroforres usando azide-alkyne dipolar cicloaddition por química click. Após a purificação, a atividade antibiótica do antibiótico fluorescente é testada por avaliação mínima de concentração inibitória. Para estudar o acúmulo bacteriano, pode ser utilizada espectrofometria ou citometria de fluxo, permitindo uma análise muito mais simples do que os métodos que dependem de derivados radioativos de antibióticos. Além disso, a microscopia confocal pode ser usada para examinar a localização dentro da bactéria, com informações valiosas sobre o modo de ação e mudanças que ocorrem em espécies resistentes. O uso de sondas fluorescentes de antibióticos no estudo da resistência antimicrobiana é um método poderoso com muito potencial para expansão futura.
A resistência antimicrobiana (RMM) é uma crise crescente que representa uma grande ameaça à saúde humana em todo o mundo. A resistência à maioria dos antibióticos foi relatada, e infecções causadas por bactérias resistentes a todos os medicamentos clinicamente disponíveis estão surgindo. Para combater a ascensão da RMA, precisamos aumentar nossa compreensão deste fenômeno multifacetado e dos mecanismos e interações subjacentes entre antibióticos e bactérias. Um aspecto historicamente mal compreendido é a permeação de antibióticos em bactérias, juntamente com os fenômenos do acúmulo e da efflux. Esse conhecimento é crucial na concepção de novas drogas e na compreensão de mecanismos de resistência. Assim, isso desempenha um papel crítico na pesquisa da RMM.
Existem duas abordagens principais que podem ser tomadas para medir a concentração de antibióticos: medir a droga diretamente ou marcar com um moiety projetado para facilitar a quantificação. Embora a marcação do antibiótico melhore a detecção, isso pode perturbar a atividade biológica da droga, como atividade antimicrobiana e permeabilidade. Este não é um problema para métodos não marcados; no entanto, a detecção pode ser desafiadora. Nos últimos anos, os avanços tecnológicos levaram a um boom de pesquisas utilizando espectrometria de massa (MS) para medir diretamente a concentração de antibióticos em bactérias1,2,3,4,5,6,7. Esses estudos mostraram que é possível estudar o acúmulo intracelular em uma variedade de bactérias, com bactérias gram-negativas as mais estudadas. A quantificação da permeabilidade das moléculas tem sido então ligada à atividade e usada para informar o desenvolvimento de medicamentos2,3,4, embora seja preciso ter cautela ao confundir diretamente o acúmulo e a atividade-alvo5. Antes do desenvolvimento de EsM, os únicos antibióticos cuja concentração poderia ser diretamente medida foram aqueles que possuem fluorescência intrínseca, como tetraciclina e as quinolones8,9,10,11. Embora obviamente limitado em escopo, acúmulo e efflux foram examinados e quantificados, ilustrando a utilidade da quantificação baseada em fluorescência.
Antibióticos marcados têm sido usados por muitas décadas para estudar distribuições, modos de ação e resistência, com tags radioativas e fluorescentes sendo comuns. Sondas marcadas por rádio têm a vantagem de serem quase idênticas ao composto pai, portanto, é improvável que a atividade biológica seja significativamente diferente. Isótopos como 3H, 14C e 15N têm sido frequentemente usados devido à proeminência desses elementos em antibióticos, e uma variedade de andaimes antibióticos foram examinados1,10,12,13. Embora a detecção de radiosondas seja simples, há uma série de preocupações logísticas (por exemplo, segurança, isótopos de meia-vida) que limitaram o uso dessa abordagem. Outra estratégia são antibióticos fluorescentes. Essas sondas podem ser usadas para examinar a distribuição e os modos de ação e resistência da droga-mãe, usando tecnologia mais simples do que a Ems e sem os problemas logísticos da radiação8. A principal desvantagem para essa abordagem é que os antibióticos são geralmente moléculas relativamente pequenas, daí a introdução de um moiety fluorescente representa uma mudança química significativa. Essa alteração pode impactar propriedades fisioquímicas e atividade antibacteriana. Portanto, deve-se ter cuidado para avaliar esses fatores para gerar resultados representativos do antibiótico pai.
Neste trabalho, um método é descrito para sintetizar, avaliar e usar antibióticos fluorescentes, como em nossas publicações anteriores14,15,16. Através de trabalhos anteriores, vários antibióticos fluorescentes foram preparados e usados para uma variedade de propósitos (ver Stone et al.8). Para minimizar a probabilidade de impactar a atividade biológica, fluoroforres muito pequenos são utilizados neste trabalho: nitrobenzoxadiazol (NBD, verde) e 7-(dimetilamino)-2-oxo-2H-cromado-4-yl (DMACA, azul). Além disso, é descrita a avaliação da atividade antibacteriana utilizando o ensaio de concentração mínima de inibição de diluição de microbroche (MIC), para que o efeito das modificações na atividade possa ser medido. Essas sondas fluorescentes podem ser usadas em ensaios espectrofotométricos, citometria de fluxo e microscopia. A gama de aplicações possíveis é onde reside a vantagem dos antibióticos fluorescentes. O acúmulo de celular pode ser quantificado, categorizado e visualizado, algo que não é possível usando apenas esm. Espera-se que o conhecimento adquirido através do uso de antibióticos fluorescentes ajude na nossa compreensão da resistência e na luta contra a RM.
1. Síntese de Alkyne-fluoroforres
2. Síntese de Antibióticos Fluorescentes
3. Avaliação da Atividade Antimicrobiana
NOTA: Todo o trabalho envolvendo bactérias deve ser realizado em condições estéreis para evitar a contaminação do ensaio ou do laboratório. Todos os meios de comunicação devem ser autolavados antes do uso, e o plástico e equipamentos como pipetas devem ser mantidos estéreis. Recomenda-se que o trabalho seja feito em um capô de biocontenção (tipo 2).
4. Análise do Acúmulo de Sondas por Espectrofotometria e Citometria de Fluxo
NOTA: Esses tempos de centrífuga foram otimizados para E. coli,de modo que pequenas alterações podem ser necessárias para outras espécies. Dados representativos para acúmulo de sondas são relatados para a sonda ciprofloxacina com rótulo NBD.
5. Preparação para Análise Microscópica
Figura 1 Ilustra a reação química do clique-chave (A)para a preparação dos antibióticos fluorescentes, e com (B) exemplos de estruturas de nossos antibióticos fluorescentes publicados à base de ciprofloxacina (cipro), trimethoprim (TMP) e linezolid. Todas essas sondas foram sintetizadas a partir dos antibióticos correspondentes através de um intermediário azida. Eles foram então acoplados aos fluoroforos NBD e DMACA, cada um funcionalizado com uma alquina.
A Figura 2 mostra exemplo lcms traços de uma reação de clique ciprofloxacin-N3 e NBD-alkyne, onde o azida elutou a 3,2 min e o produto a 3,8 min. Comparar 1 e 2 mostra como o progresso da reação do clique poderia ser seguido pelo desaparecimento do pico azide (por UV ou detector de MS). O Espectro 3 demonstra o impacto da purificação, com picos errôneos desaparecendo dos traços de MS e UV. Tanto o progresso da pureza quanto da reação podem ser quantificados pela integração do pico do produto e quaisquer picos de impureza.
A Figura 3 demonstra resultados típicos da avaliação do acúmulo intracelular por espectroscopia de fluorescência na presença e ausência de efflux. Neste experimento, a E. coli foi tratada com TMP-NBD com ou sem a adição da CCCP, que desaba da força motriz próton (PMF). A fluorescência intracelular da bactéria foi significativamente maior quando pré-tratada com CCCP, indicando que a efflux reduziu o acúmulo dessas bactérias. Este experimento foi repetido usando bactérias deficientes no TOLC,mostrando a capacidade deste ensaio para examinar o impacto dos componentes individuais da bomba efflux. Neste caso, embora tenha havido um aumento da fluorescência intracelular em relação às bactérias do tipo selvagem, o acúmulo de CCCP ainda aumentou. Esses achados indicam que o TOLC participa da EFFLUX inTMP, mas não é a única bomba de movimentação de PMF envolvida.
A Figura 4 mostra o resultado do mesmo experimento da Figura 2,mas com o acúmulo medido pela citometria de fluxo em vez de espectroscopia. As mesmas tendências de dados foram observadas, demonstrando que qualquer técnica pode ser usada para estudar o fenômeno do acúmulo intracelular mediado pela efflux.
A Figura 5 mostra imagens representativas de microscopia confocal de gram-positive (S. aureus) e bactérias gram-negativas(E. coli) rotuladas com TMP-NBD (1) e cipro-NBD ( 2+ 3) sondas fluorescentes, respectivamente. Em ambos os casos, foi adicionado o corantes da membrana vermelha FM4-64FX para comparar a co-localização. Para tmp-NBD, também foi utilizado o dye ácido nucleico azul Hoechst-33342. Ao sobrepor essas imagens, a localização do antibiótico na bactéria foi visualizada. Comparar painéis 2 e 3 mostra como foi examinado o impacto da efflux, com o inibidor de efflux CCCP utilizado em 2,resultando em acúmulo intracelular. No painel 3,nenhum CCCP foi adicionado. Assim, a efflux está ativa e nenhum acúmulo de sonda foi visto.
A Figura 6 mostra imagens representativas de microscopia confocal de bactérias Gram-positive (S. aureus) rotuladas com a sonda de oxazolidinona com rótulo DMACA Lz-NBD. O corante de membrana vermelha FM4-64FX foi adicionado para comparar a co-localização, e o corante ácido nucleico verde Hoechst-33342 também foi usado. Ao sobrepor essas imagens, a localização do antibiótico na bactéria foi visualizada, mostrando localização interna distinta da membrana e ácido nucleico.
A Tabela 1 mostra valores MIC para três séries de antibióticos fluorescentes, ciprofloxacina, trimetoprim (TMP) e linezolid (Lz), com dados apresentados para os derivados do antibiótico pai, NBD e DMACA de cada um. Espécies representativas para cada antibiótico foram escolhidas, incluindo grama-positivo e grama negativo. Para a série ciprofloxacina, ambas as sondas fluorescentes perderam a atividade antibiótica em comparação com a droga-mãe, mas mantiveram alguma atividade contra todas as espécies. Da mesma forma, as sondas linezolid perderam alguma atividade, mas permaneceram um antibiótico moderado a fraco. As sondas TMP perderam quase toda a atividade contra bactérias do tipo selvagem, mas estavam ativas contra efflux deficiente E. coli,indicando que a perda de atividade antibacteriana foi devido à falta de acúmulo.
Figura 1: Síntese e estruturas de sondas derivadas de antibióticos. (A)O esquema de reação geral para a síntese de sondas de antibióticos fluorescentes de antibióticos azidas e alquine-fluoroforres. (B)As estruturas de nossas sondas publicadas baseadas em ciprofloxacina, trimetoprim e linezolid. Clique aqui para ver uma versão maior deste valor.
Figura 2: Medição da pureza da sonda derivada de antibióticos pela LCMS. LcMS analítico traça de (1) incompleto, (2) completo, e (3) HPLC purificado ciprofloxacin-N3 + NBD-alkyne clique reações demonstrando o desaparecimento do material inicial após a conclusão da reação, e picos diversos sobre a purificação. A = traço UV-Vis (absorção a 250 nm), B = traço MS (modo positivo e negativo). Clique aqui para ver uma versão maior deste valor.
Figura 3: Medição do leitor de placas de acúmulo de sondas derivadas de antibióticos. Fluorescência espectroscópica medição do acúmulo celular de TMP-NBD (50 μM) em tipo selvagem (1, ATCC 25922) e ΔtolC (2, ATCC 25922) E. coli incubado(A) com e(B) sem adição de CCCP (100 μM). A significância estatística (**p ≤ 0,01; ***p ≤ 0,001) é mostrada entre a ausência ou presença de CCCP e entre o tipo selvagem e δtolCE. coli. Os dados relatados são a média ± SD para três experimentos. Esse número é adaptado da nossa publicação anterior15, e ilustra o uso da espectroscopia para elucidar o papel da efflux no acúmulo intracelular. Clique aqui para ver uma versão maior deste valor.
Figura 4: Medição de citometria de fluxo do acúmulo de sondas derivadas de antibióticos. Medição de citometria de fluxo de acúmulo celular utilizando TMP-NBD em tipo selvagem (1, ATCC 25922) e ΔtolC (2, ATCC 25922) E. colicubado com e sem adição de CCCP (100 μM). A atividade mediana de fluorescência é mostrada a partir de 10.000 eventos bacterianos, significância estatística (***, p ≤ 0,001; ****, p ≤ 0,0001) é mostrada entre a ausência e presença de CCCP e entre o tipo selvagem e δtolCE. coli. Os dados relatados são a média ± SD para três experimentos. Esse número é adaptado da nossa publicação anterior15, e ilustra o uso da citometria de fluxo para elucidar o papel da efflux no acúmulo intracelular. Clique aqui para ver uma versão maior deste valor.
Figura 5: Visualização de microscopia confocal da localização da sonda NBD. Imagens de microscopia confocal de 1) S. aureus ao vivo rotuladas com Hoechst-33342 (ácido azul, nucleico), TMP-NBD (verde), FM4-64FX (vermelho, membrana) e sobreposto; 2) E. coli vivo tratado com CCCP (inibidor efflux) rotulado com cipro-NBD (verde), FM4-64FX (vermelho, membrana) e sobreposto; 3) E. coli ao vivo rotulado com cipro-NBD (verde), FM4-64FX (vermelho, membrana) e sobreposto. Esse número é adaptado de nossas publicações anteriores15,16, e ilustra o uso de microscopia para examinar a localização da sonda, incluindo o impacto da efflux. Clique aqui para ver uma versão maior deste valor.
Figura 6: Visualização de microscopia confocal da localização da sonda DMACA. Imagens de microscopia confocal de S. aureus vivos rotulados com sonda de oxazolidinona Lz-DMACA (azul), verde Sytox (verde, ácido nucleico) e FM4-64FX (vermelho, membrana). Clique aqui para ver uma versão maior deste valor.
MIC (μg/mL) | |||||||||||
Espécie | Tensão | Cipro | Cipro-NBD | Cipro-DMACA | Tmp | TMP-NBD | TMP-DMACA | Linezolid (Lz) | Lz-NBD | Lz-DMACA | |
Staphylococcus aureus | ATCC 25923 | 0.125 - 0.5 | 32 - ≥64 | 16 | 1 | 16 | >64 | ||||
ATCC 43300 | 1 | 16 | >64 | ||||||||
Streptococcus pneumoniae | ATCC 700677 | 1 | 4 | 64 | |||||||
Enterococcus faecium | ATCC 35667 | 1 - 8 | 32 | 32 - ≥64 | |||||||
ATCC 51559 | 2 | 16 | 32 | ||||||||
Klebsiella pneumoniae | ATCC 13883 | 0.015 - 0.06 | 8 - 16 | 8 - 32 | |||||||
Pseudomonas aeruginosa | ATCC 27853 | 0.25 - 1 | 32 - ≥64 | 32 - ≥64 | |||||||
Escherichia coli | ATCC 25922 | ≤0,004 | 8 | 2 | 0.5 | >64 | >64 | ||||
Mutante ΔtolC | 0.125 | 0.25 | 2 |
Mesa 1. Atividades antibióticos de sondas de antibióticos fluorescentes baseadas em ciprofloxacina, trimetoprim e linezolid contra cepas bacterianas clinicamente relevantes apropriadas, medida por ensaios mic de microdiluição caldo. Na maioria dos casos, as sondas perderam alguma atividade em comparação com a droga-mãe, mas retiveram alguma potência antibiótico mensurável (suficiente para ser útil em estudos posteriores).
A criação de uma sonda de antibióticos fluorescentes bem sucedida deve começar com um planejamento cuidadoso e consideração do SAR da droga-mãe. Se o SAR não for conhecido ou totalmente explorado, várias opções podem precisar ser testadas para encontrar um site que possa ser seletivamente modificado sem abolir a atividade biológica. Uma vez identificado um local/s, a instalação de um moiety de linker é muitas vezes essencial para fornecer espaçamento estérico entre o local biológico de ação e o fluorofóbico inativo. Deve-se tomar cuidado para que a reação usada para anexar o linker ao antibiótico deixe um grupo funcional bioestável, evitando, por exemplo, esters suscetíveis ao decote por esterases in vivo. Dependendo do perfil farmacodinâmico e farmacocinético do antibiótico, um simples linker alkyl pode ser usado, ou então uma opção menos lipofílica, como um linker de polietileno glicol (PEG) deve ser considerado. Com o linker ligado, a atividade antibacteriana deve ser avaliada para garantir que os MICs contra bactérias relevantes sejam semelhantes ao composto pai.
Neste trabalho, recomendamos o uso de Huigsen azide-alkyne [3+2] cicloaddition dipolar (clique em química, ver Figura 1) para ligar o fluoroforor ao antibiótico, por uma série de razões. As reações de cliquesão são altamente seletivas, o que significa que a proteção de grupos reativos no antibiótico não é necessária, e além disso, a reação deixa um moiety de triazole estável e biocompatível. O componente azide é introduzido na porção de antibióticos em nossos procedimentos, pois isso é geralmente mais facilmente realizado com uma variedade de tipos estruturais do que a introdução de um alquino. As sintetas de dois fluoroforos alquinos derivados são descritas aqui, embora outras possam ser exploradas se desejadas. NbD e DMACA foram escolhidos devido ao seu pequeno tamanho, minimizando a possibilidade de interferir na penetração celular e na interação com o alvo. A reação do clique em si é realizada utilizando catalisise de cobre, onde tanto2+ (CuSO4, com um agente redutor de ácido ascórbico) ou+ (CuI) pode ser usado como reagente inicial. Após a purificação (Figura 2),os MICs devem então ser testados como com o azide. Mesmo com cuidadosa consideração da escolha fluorofórfo e local de apego, é possível que a má atividade com antibióticos seja observada. Isso não significa, no entanto, que uma sonda inativa não é usada. Como mostrado com as sondas TMP, compostos com má atividade antibacteriana ainda podem se ligar ao mesmo alvo que a droga-mãe. Isso pode permitir estudos sobre o modo de ação e exame de fenômenos que levam à resistência, como a efflux.
Conforme descrito na seção de protocolos, é possível analisar a rotulagem bacteriana pelos antibióticos fluorescentes usando um simples ensaio de espectrofofotometria(Figura 3) ou citometria de fluxo(Figura 4). Ambos os métodos são capazes de quantificar o acúmulo de celular, e ao lising células e examinar a localização da fluorescência em lisato, é possível avaliar o acúmulo intracelular. Neste protocolo, o uso de lisozyme para lise celular é descrito, pois esta é uma técnica rápida e universal. Outras condições de lise, como o tratamento noturno com glicina-HCl7,também foram utilizadas com sucesso. Utilizando essa técnica, é possível estudar o impacto da efflux no acúmulo de antibióticos, que é um grande mecanismo de resistência. Se a efflux estiver realmente presente nas bactérias, será observada a falta de acúmulo intracelular, embora isso possa ser resgatado usando um inibidor de efflux como cccp.
A microscopia também pode ser realizada para inspecionar visualmente a localização de sondas em diferentes bactérias, obtendo informações sobre o modo de ação e potencialmente também resistência (ver Figura 5 para exemplos representativos). Para ver a localização dentro das bactérias, é necessário um microscópio confocal de alta resolução, equipado com recursos como SIM (microscopia de iluminação estruturada), SR-SIM (superresolução-SIM), Airyscan ou STED (esgotamento estimulado por emissões). Além disso, devem ser utilizados deslizamentos de cobertura de alto desempenho e análises pós-imagem realizadas em um software apropriado (por exemplo, FIJI, Zen ou Imaris). A localização das sondas é comparada a corantes que mancham arquiteturas específicas, como Hoechst-33342 (ácido azul, nucleico), Syto-9 (ácido verde, nucleico) e FM4-64FX (vermelho, membrana). A escolha dos corantes deve ser feita para combinar com o antibiótico fluorescente, de modo que cada cor usada tenha sobreposição espectral mínima. Para obter as melhores imagens possíveis, a otimização pode ser necessária. Por exemplo, se as bactérias estão muito lotadas no escorregador, tome apenas parte da pelota suspensa, em seguida, diluir com mais meio de montagem. Em contraste, se as bactérias são muito esparsas no slide, basta começar com mais bactérias. Neste protocolo, recomenda-se o uso de um gel termoreversível compatível com células vivas (por exemplo, Cygel) para imagens de células vivas, pois imobiliza bactérias (incluindo bactérias motile), mas outros meios de montagem ou agarose também foram usados com sucesso.
No geral, apesar dos desafios que podem ser enfrentados na preparação de um antibiótico fluorescente biologicamente ativo, a simplicidade de seu uso e sua versatilidade tornam essas sondas ferramentas atraentes para pesquisa na AMR. O trabalho futuro usando antibióticos fluorescentes tem o potencial de fornecer uma visão dos mecanismos de resistência a antibióticos, melhorar nossa compreensão de como os antibióticos atuais operam e ajudar no desenvolvimento de melhores medicamentos.
Os autores não têm nada a declarar.
A MRLS é apoiada por um Prêmio Australiano de Pós-Graduação (APA) e um Prêmio de Avanço em Pesquisa em Biociências Moleculares. Wanida Phetsang foi apoiada pela UQ International Scholarship (UQI) e iMB Postgraduate Award (IMBPA). Mac é pesquisador principal da NHMRC (APP1059354) e também possui uma consulta de pesquisador estrito na Universidade de Queensland, com seu tempo restante como CEO da Inflazome Ltd, uma empresa que desenvolve medicamentos para atender às necessidades clínicas não atendidas em doenças inflamatórias. O MATB é apoiado em parte pela Wellcome Trust Strategic Grant WT1104797/Z/14/Z e pelo SUBSÍDIO de Desenvolvimento NHMRC APP1113719. A microscopia foi realizada na Australian Cancer Research Foundation (ACRF)/Institute for Molecular Bioscience Cancer Biology Imaging Facility, que foi estabelecida com o apoio da ACRF.
Name | Company | Catalog Number | Comments |
3-(dimethylamino)phenol | Alfa-Aesar | B23067 | |
4-chloro-7-nitro-benzofuran | Sigma-Aldrich | 163260-5G | |
Amicon Ultra-0.5 centrifugal filter unit with Ultracel- 10 membrane | Merck | UFC501096 | |
Atlantis Prep T3 OBD (100 A, 5 uM, 10x250 mm) | Waters | 186008205 | |
Atlantis T3 column (100 A, 5 uM, 2.1 × 50 mm) | Waters | 186003734 | |
Bruker Avance 600 MHz spectrometer | Bruker | ||
Buchi Reveleris C18 12g Cartridge | Buchi | BUC145152103 | |
CCCP | Sigma-Aldrich | C2759 | |
Celite 545 | Sigma-Aldrich | 22140-5KG-F | |
Cygel | ABCAM | Ab109204 | |
Elyra PS,1 SIM/STORM confocal microscope | Zeiss | ||
FM4-64FX, fixable analog of FM™ 4-64 membrane stain | Life Technologies Australia Pt | F34653 | |
Gallios flow cytometer | Beckman Coulter | ||
Gamma 2-16 LSCplus lyophilise | CHRIST | ||
Gilson HPLC 2020 | Gilson | ||
Hanks' Balanced Salt solution, Modified, with sodium bicarbonate, without phenol red, calcium chloride and magnesium sulfate, liquid, sterile-filtered, suitable for cell culture | Sigma-Aldrich | H6648-500ML | |
Hettich Zentrifugen Rotofix 32 | Hettich | ||
High performance #1.5 cover slips (18 x 18 mm) | Schott/Zeiss | 474030-9000-000 | |
Hoechst 33342, Trihydrochloride, Trihydrate - Fluo | Life Technologies Australia Pt | H21492 | |
LB | AMRESCO | J106 | |
Leica STED 3X Super Resolution Microscope with White Light Laser excitation | Leica | ||
Lysozyme from chicken egg white lyophilized powder | Sigma-Aldrich | L6876 | |
Mueller Hinton II Broth Cation adjusted | Becton Dickinson | 212322 | |
Propargylamine | Sigma-Aldrich | P50900-5G | |
Reveleris GRACE MPLC | Buchi | ||
Shimadzu LCMS-2020 | Shimadzu | ||
Sigma 1-15 Microcentrifuge | Sigma-Aldrich | ||
Silica gel 60 (0.040-0.063 mm) for column chromatography (230-400 mesh ASTM) | Merck | 1093859025 | |
SYTO 9 Green Fluorescent Nucleic Acid Stain | Life Technologies Australia Pt | S34854 | |
TECAN Infinite M1000 PRO | TECAN |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados