É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Estudos da biomecânica da parede celular são essenciais para a compreensão do crescimento e morfogênese das plantas. O protocolo a seguir é proposto para investigar paredes celulares primárias finas nos tecidos internos de órgãos de plantas jovens usando microscopia de força atômica.
As propriedades mecânicas das paredes celulares primárias determinam a direção e a taxa de crescimento das células vegetais e, portanto, o tamanho e a forma futuros da planta. Muitas técnicas sofisticadas foram desenvolvidas para medir essas propriedades; no entanto, a microscopia de força atômica (AFM) continua sendo a mais conveniente para estudar a elasticidade da parede celular no nível celular. Uma das limitações mais importantes desta técnica tem sido que apenas células vivas superficiais ou isoladas podem ser estudadas. Aqui, o uso da microscopia de força atômica para investigar as propriedades mecânicas das paredes celulares primárias pertencentes aos tecidos internos de um corpo vegetal é apresentado. Este protocolo descreve medidas do módulo aparente de Young de paredes celulares em raízes, mas o método também pode ser aplicado a outros órgãos vegetais. As medições são realizadas em seções de material vegetal derivadas de vibratomo em uma célula líquida, o que permite (i) evitar o uso de soluções plasmolizantes ou impregnação de amostras com cera ou resina, (ii) tornar os experimentos rápidos e (iii) prevenir a desidratação da amostra. Ambas as paredes celulares anticlinais e periclinais podem ser estudadas, dependendo de como a amostra foi seccionada. Diferenças nas propriedades mecânicas de diferentes tecidos podem ser investigadas em uma única seção. O protocolo descreve os princípios de planejamento do estudo, questões com a preparação e medidas do espécime, bem como o método de seleção de curvas de força-deformação para evitar a influência da topografia nos valores obtidos do módulo elástico. O método não é limitado pelo tamanho da amostra, mas é sensível ao tamanho da célula (ou seja, células com um grande lúmen são difíceis de examinar).
As propriedades mecânicas da parede celular da planta determinam a forma da célula e sua capacidade de crescer. Por exemplo, a ponta de crescimento do tubo de pólen é mais macia do que as partes não crescentes do mesmo tubo1. A formação de primórdios no meristema Arabidopsis é precedida por uma diminuição local da rigidez da parede celular no local do futuro primordium 2,3. As paredes celulares de Arabidopsis hypocotyl, que são paralelas ao eixo principal de crescimento e crescem mais rapidamente, são mais macias do que aquelas que são perpendiculares a este eixo e cre....
1. Preparação da amostra para medições de AFM
Os mapas típicos de módulo elástico e DFL, bem como as curvas de força obtidas em raízes de centeio e milho pelo método descrito, são apresentados na Figura 2. A Figura 2A mostra o módulo elástico e os mapas DFL obtidos na seção transversal da raiz primária do centeio. As áreas brancas no mapa do módulo (Figura 2A, à esquerda) correspondem a uma superestimação errônea do módulo de Young devido ao scanner atingir s.......
As propriedades mecânicas das paredes celulares primárias determinam a direção e a taxa de crescimento das células vegetais e, portanto, o tamanho e a forma futuros da planta. O método baseado em AFM aqui apresentado complementa as técnicas existentes que são usadas para estudar as propriedades das paredes celulares das plantas. Permite que a elasticidade das paredes celulares, que pertencem aos tecidos internos da planta, seja investigada. Utilizando o método apresentado, as propriedades mecânicas das paredes .......
Os autores não têm conflitos de interesse.
Gostaríamos de agradecer ao Dr. Dmitry Suslov (Universidade Estatal de São Petersburgo, São Petersburgo, Rússia) e à Prof. Mira Ponomareva (Instituto de Pesquisa Científica Tártara de Agricultura, FRC KazSC RAS, Kazan, Rússia) pelo fornecimento de sementes de milho e centeio, respectivamente. O método apresentado foi desenvolvido no âmbito do Projeto da Fundação Científica Russa No. 18-14-00168 concedido à LK. A parte do trabalho (obtenção dos resultados apresentados) foi realizada pela AP com o apoio financeiro da atribuição do governo para o Centro Científico FRC Kazan da RAS.
....Name | Company | Catalog Number | Comments |
Agarose, low melting point | Helicon | B-5000-0.1 | for sample fixation |
Brush | - | - | for section moving |
Cantilevers | NanoTools, Germany | NT_B150_v0020-5 | Model: Biosphere B150-FM |
Cantilevers | NT-MDT, Russia | FMG01/50 | Model: FMG01 |
Cyanoacrylate adhesive | - | - | for vibratomy |
Glass slides | Heinz Herenz | 1042000 | for vibratomy and AFM calibration |
ImageAnalysis P9 Software | NT-MDT, Russia | - | for data analysis |
Leica DM1000 epifluorescence microscope | Leica Biosystems, Germany | 11591301 | for section check |
NaOCl | - | - | for seed sterilization |
Nova PX 3.4.1 Software | NT-MDT, Russia | - | for experiments conducting |
NTEGRA Prima microscope with HD controller | NT-MDT, Russia | - | for AFM and data acquisition |
Petri dish 35 mm | Thermo Fisher Scientific | 153066 | for sample fixation |
Tip pipette 1000 µL | Thermo Fisher Scientific | 4642092 | - |
Tip pipette 2-20 µL | Thermo Fisher Scientific | 4642062 | - |
Ultrapure water | - | - | - |
Vibratome Leica VT 1000S | Leica Biosystems, Germany | 1404723512 | for sample sectioning |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados