Evaluating the Heat Transfer of a Spin-and-Chill

Visão Geral

Source: Michael G. Benton and Kerry M. Dooley, Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA

The Spin-and-Chill uses heat transfer and fluid flow fundamentals to chill beverages from room temperature to 38 °F in as little as 2 min. It would take a refrigerator approximately 240 min and an ice chest approximately 40 min to achieve an equivalent temperature change. This is accomplished Spin and Chill by spinning a can or bottle at up to 500 rpm, which creates little or no foaming.

In this experiment, the efficacy of spinning a cylinder (i.e., soda can) at high speeds to cool a soft drink will be evaluated. Operational parameters, such as rpm and spin time, will be varied to assess their effect on heat transfer, and the heat transfer coefficient will be calculated using a lumped parameter model.

Procedimento

1. Testing the Spin-and-Chill

  1. Fill the aluminum soda can with room temperature water and then record the temperature.
  2. Measure the total weight of the ice being used with the balance, enough to surround the Spin-and-Chill.
  3. Seal the aluminum soda can using a plastic sealing lid and insert the assembly into the Spin-and-Chill.
  4. Activate the Spin-and-Chill. It should run about 2 min at ~ 300 rpm.
  5. Remove the aluminum soda can from the Spin-and-Chill and remo

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Resultados

The lumped parameter model is used to determine the heat transfer coefficient, h, for the different experimental conditions. To calculate the efficiency, we first determine the energy transferred as heat into the ice bath from the liquid in the can. If the system were adiabatic (100% efficient), Qwater + Qice = 0. The efficiency is determined by dividing the absolute value of heat released by the water in the can (Qwater) by the heat absorbed by the ice du

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Aplicação e Resumo

This experiment is designed to assess the ability of the Spin-and-Chill to cool a soft drink at record speeds. The lumped parameter model was used since convection was much more important than conduction (due to the high rate of mixing).

The data collected calls into question the ability of the Spin-and-Chill to cool at warm can of soda to 38 °F in 2 minutes. However, with three sequential uses and a time period of about 6 minutes, the Spin-and-Chill can cool the soft drink to the desired

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Referências
  1. Vapor-compression Refrigeration." ChemEngineering - Vapor-compression Refrigeration. N.p., n.d. Web. 01 Dec. 2016.
  2. Bartgis, Catherine, Alexander M. Lebrun, Rhongui Ma, and Liang Zhu. "Determination of Time of Death in Forensic Science via a 3-D Whole Body Heat Transfer Model." Journal of Thermal Biology (2016). Web.
  3. Wemhoff, A.p., and M.v. Frank. "Predictions of Energy Savings in HVAC Systems by Lumped Models." Energy and Buildings 42.10 (2010): 1807-814. Web.
  4. Encyclopedia of Chemical Engineering Equipment." Heat Exchangers - Heat Transfer - MEL Equipment Encyclopedia 4.0. N.p., n.d. Web. 01 Dec. 2016.
Tags
Spin and chillHeat TransferTechnologyEngineering ProcessesConvective Heat TransferCooling EfficiencyModelUnderstandHeat Transfer SituationsExperimentsApplicationsSoda CanReservoir Of IceRotatingRevolutions Per MinuteCooling RateTemperature DistributionFluidWallThin Membrane

Pular para...

0:07

Overview

1:12

Principles of Spin-and-Chill Operation

4:13

Convective Heat Transfer: Lumped Parameter Model

5:42

Results

7:04

Applications

8:21

Summary

Vídeos desta coleção:

article

Now Playing

Evaluating the Heat Transfer of a Spin-and-Chill

Chemical Engineering

7.3K Visualizações

article

Teste de eficiência da transferência de calor de um trocador de calor de tubos aletados

Chemical Engineering

17.8K Visualizações

article

Uso de um secador de bandeja para investigar a transferência de calor por convecção e condução

Chemical Engineering

43.7K Visualizações

article

Viscosidade de soluções de propilenoglicol

Chemical Engineering

32.1K Visualizações

article

Porosimetria de um pó de sílica alumina

Chemical Engineering

9.6K Visualizações

article

Demonstração do modelo de lei de potência por meio de extrusão

Chemical Engineering

9.9K Visualizações

article

Absorvedor de gás

Chemical Engineering

36.4K Visualizações

article

Equilíbrio vapor-líquido

Chemical Engineering

87.5K Visualizações

article

O efeito da taxa de refluxo na eficiência da destilação em bandejas

Chemical Engineering

77.1K Visualizações

article

Eficiência da Extração Líquido-Líquido

Chemical Engineering

48.1K Visualizações

article

Reator de fase líquida: Inversão de sacarose

Chemical Engineering

9.6K Visualizações

article

Cristalização de Ácido Salicílico via Modificação Química

Chemical Engineering

24.0K Visualizações

article

Fluxo monofásico e bifásico em um reator de leito compactado

Chemical Engineering

18.8K Visualizações

article

Cinética da Polimerização por Adição ao Polidimetilsiloxano

Chemical Engineering

16.0K Visualizações

article

Reator Catalítico: Hidrogenação de etileno

Chemical Engineering

29.9K Visualizações

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados