Войдите в систему

Enolate ions are formed by the acid–base reaction of a carbonyl compound with a base. This leads to deprotonation of the α hydrogen atom, leading to a resonance-stabilized enolate ion where one of the contributing structures is an oxyanion, which imparts additional stability. Therefore, the proton on the α carbon is more acidic in nature than that of other sp3-hybridized C–H bonds but less acidic than those in O–H bonds where the negative charge in the conjugate base is localized on the oxygen atom. This is reflected in their trend of pKa values. For example, acetic acid, ethanol, acetone, 1-propene, and ethane have pKa values of 4.8, 16, 19.2, 43, and 50, respectively.

The enolate ion is an example of an ambident nucleophile—i.e., a nucleophile with two reactive sites. The contributing structures of enolate ions show that both carbon and oxygen atoms can bear the negative charge. Hence, the enolate ion is the conjugate base of both keto and enol forms. In theory, it can react with a particular electrophile to form two different products by bond formation at the two different sites. However, an enolate ion usually reacts at the carbon end, as this is more nucleophilic than the oxygen site.

As enolate ions are Brønsted bases, they react with Brønsted acids, like protons. This leads to hydrogen exchange at the α position of carbonyl compounds with that of solvent, leading to isotope exchange in the presence of D2O and an aqueous base. An optically active aldehyde or ketone undergoes racemization if there is an asymmetric α carbon in the molecule. The loss in stereogenicity owes to the formation of an achiral enolate intermediate where all three atoms are trigonal planar due to sp2 hybridization and conjugation through p-orbital overlap. Since the pKa of an α hydrogen is very high in the case of esters, the various consequences of enolate ion formation is observed specifically for aldehydes and ketones.

Enolate ions also react as Lewis bases, where they act as nucleophiles. Therefore, they can undergo two types of reaction leading to the formation of new bonds at the α carbon:

  1. Substitution reactions with electrophiles to yield halogenated and alkylated products with molecular halogen (X2) in the presence of an acid or base and an alkyl halide (RX) or sulfonate ester (RSO3), respectively.
  2. Addition reactions with carbonyl groups at the electrophilic carbon center followed by nucleophilic acyl substitution reactions depending on the structure of the carbonyl group.
Теги
Enolate IonsCarbonyl CompoundsAcid base ReactionDeprotonationResonance StabilizationOxyanionNucleophileAmbidentKeto enol TautomerismIsotope ExchangeRacemizationSubstitution ReactionsAddition ReactionsElectrophilesHalogenationAlkylation

Из главы 15:

article

Now Playing

15.2 : Reactivity of Enolate Ions

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Просмотры

article

15.1 : Реакционная способность энолов

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.8K Просмотры

article

15.3 : Виды энолов и энолатов

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Просмотры

article

15.4 : Конвенции механизма Enolate

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Просмотры

article

15.5 : Региоселективное образование энолатов

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.4K Просмотры

article

15.6 : Стереохимические эффекты энолизации

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Просмотры

article

15.7 : Катализируемое кислотой α-галогенирование альдегидов и кетонов

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.4K Просмотры

article

15.8 : Стимулируемое основаниями α-галогенирование альдегидов и кетонов

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Просмотры

article

15.9 : Многократное галогенирование метилкетонов: галоформная реакция

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.8K Просмотры

article

15.10 : α-Галогенирование производных карбоновой кислоты: обзор

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Просмотры

article

15.11 : α-Бромирование карбоновых кислот: реакция Хелла–Фольхарда–Зелинского

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Просмотры

article

15.12 : Реакции α-галокарбонильных соединений: нуклеофильное замещение

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Просмотры

article

15.13 : Нитрозирование энолов

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Просмотры

article

15.14 : Образование C–C связей: обзор конденсации альдола

α-Carbon Chemistry: Enols, Enolates, and Enamines

13.2K Просмотры

article

15.15 : Катализируемая основаниями реакция добавления алдола

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены