JoVE Logo

Войдите в систему

Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.

В этой статье

  • Резюме
  • Аннотация
  • Введение
  • протокол
  • Результаты
  • Обсуждение
  • Раскрытие информации
  • Благодарности
  • Материалы
  • Ссылки
  • Перепечатки и разрешения

Резюме

CD4+ Regulatory T cells are potent immune-modulators and serve important functions in immune homeostasis. The paucity of these cells in peripheral blood makes functional studies challenging, specifically in the context of HIV-1-infection. We here describe a method to isolate and expand functional CD4+ Tregs from peripheral blood from HIV-1-infected individuals.

Аннотация

CD4 + регуляторных Т-клеток (Tregs) являются мощными иммуномодуляторами и играют важную функцию в человеческом иммунного гомеостаза. Истощение Tregs привело к заметному увеличению антиген-специфических Т-клеточные ответы на вакцину настройки для рака и инфекционных возбудителей. Тем не менее, их роль в ВИЧ-1 иммуно-патогенеза остается спорным, так как они могут служить либо для подавления вредных ВИЧ-1 связанных иммунную активацию и тем самым замедлить ВИЧ-1 прогрессирования заболевания или же подавлять ВИЧ-1-специфический иммунитет и тем самым стимулировать вируса распространяться. Понимание и модулирующей функции Treg в контексте ВИЧ-1 может привести к потенциальным новым стратегиям для иммунотерапии или вакцин против ВИЧ. Тем не менее, важные вопросы остаются открытыми на их роль в контексте ВИЧ-1 инфекции, которая должна быть тщательно изучена.

Представляя примерно 5% от человеческих CD4 + Т-клеток в периферической крови, изучая Treg населения оказалось трудно, ESглавным образом у ВИЧ-1-инфицированных, где ВИЧ-1-связанного CD4 Т-клеток и с этим происходит истощение Treg. Характеристика регуляторных Т-клеток у пациентов с продвинутой стадией ВИЧ-1 заболевания или тканей, для которых только очень малые биологические образцы могут быть получены, поэтому чрезвычайно сложной задачей. Мы предлагаем технические решения для преодоления этих ограничений использованием изоляции и расширения Tregs от ВИЧ-1-инфицированных.

Здесь мы опишем простой и надежный метод успешно расширять Tregs изолированы от ВИЧ-1-инфицированных в пробирке. Поток отсортированных CD3 + CD4 + CD25 + CD127 низкий Tregs были стимулированы anti-CD3/anti-CD28 покрытые гранулы и культивировали в присутствии ИЛ-2. Расширенное Tregs выразили высокие уровни FOXP3, CTLA4 и ГЕЛИОС по сравнению с обычным Т-клетки и были показаны весьма подавляющим. Более легкий доступ к большому количеству Tregs позволит исследователям адрес, который яmportant вопросы, касающиеся их роли в ВИЧ-1 иммунопатогенеза. Мы считаем, что ответы на эти вопросы опыт может оказаться полезным для развития эффективной профилактики ВИЧ-1 вакцины.

Введение

Обладая более чем 34 миллионов людей, живущих с ВИЧ / СПИДом во всем мире и, по оценкам, 2,5 миллиона человек были впервые инфицированы в 2011 году потребность в эффективной вакцины против ВИЧ, чтобы обуздать всемирную эпидемию ВИЧ остается первостепенной. Однако, несмотря на три десятилетия интенсивных научных исследований, ВИЧ-1 испытаний эффективность вакцины на сегодняшний день привели лишь скромные защиту 1-3 и коррелирует защитного иммунитета остаются плохо изученными. Выяснения природы иммунного ответа, необходимые для защиты имеет важное значение для стратегической разработки эффективного ВИЧ-1 вакцины и другие иммунотерапевтическую стратегий, нацеленных на ВИЧ-1 инфекции.

Природные CD4 + регуляторных Т-клеток (Tregs) имеют решающее значение для поддержания иммунного гомеостаза клетки, контролируя чрезмерную иммунную активацию, тем самым ограничивая иммуноопосредованной повреждению тканей. Однако они также могут подавлять иммунный ответ против патогенов и предотвратить их очистку. Рака и Hepaисследования гепатита B вакцины продемонстрировали, что снижение активности Tregs может улучшить отклик вакцины и антиген-специфический иммунитет против вирусов 4-7. Тем не менее, в контексте ВИЧ-1 инфекции, точным ударом регуляторных Т-клеток остаются не вполне ясными. Tregs было показано, что снижение репликации вируса в активированных Т-клетках 8 и, возможно, повлиять иммунной активации 9. Они были также показаны для подавления ВИЧ-1-специфических иммунных реакций, что может иметь негативные последствия для прогрессирования заболевания 10,11. Таким образом, прежде чем он сможет модулировать активность Treg для повышения эффективности ВИЧ-1 вакцины, важно, чтобы получить дальнейшее понимание их функции в контексте данного заболевания.

Человеческих CD4 + регуляторные Т-клетки относительно редким популяцией клеток, что составляет около 5% от CD4 + Т-клеток в периферической крови, а их абсолютные цифры дальнейшее снижение с ВИЧ-ассоциированной CD4 + Т-лимфоцитов 12 </ Вир>. Текущие анализы для оценки Treg функции, такой как анализы пролиферации Т-клеток с Treg совместного культивирования, использование относительно большого количества клеток 12. Таким образом, характеризующей функции и специфичности регуляторных Т-клеток у пациентов с поздними стадиями ВИЧ-1 заболевания была сложной, несмотря на их важность для патогенеза ВИЧ.

Бывший изоляции естественных и расширение Tregs из ВИЧ-1 пациентов может представлять собой решение для преодоления некоторых из этих ограничений. Здесь мы опишем простой и надежный протокол расширить функциональные Tregs, взятых у ВИЧ-1-инфицированных лиц в пробирке, мы более подробно объяснить, как фенотип их и проверить их подавляющих функцию с помощью проточной цитометрии анализа. Мы считаем, что этот протокол будет способствовать доступу к Tregs и помощь в понимании их роли в ВИЧ-1 прогрессирования заболевания.

протокол

1. Regulatory T cell isolation from HIV-1 Positive Blood

  1. Carefully transfer blood, collected in ACD tubes, into a 50 ml conical tube for a final volume of 15 ml blood per tube.
  2. Add 25 μl/ml of blood of RosetteSep Human CD4+ T Cell Enrichment Cocktail, mix carefully and incubate 20 min at room temperature.
  3. Add 15 ml of PBS/2% FBS to the blood and mix carefully. Layer the diluted blood sample on top of 15 ml of Histopaque at room temperature in a 50 ml conical tube. Spin the conical tube for 20 min at 1,200 x g with a slow start and no brakes.
  4. Transfer the CD4+ T cell enriched PBMC layer in a new 50 ml conical tube, wash the cells by adding PBS/2% FBS and spin them down for 10 min at 1,200 x g. Then count the cells, wash again and resuspend the cells at about 20 x 106/200 μl.
  5. Add the following antibodies (concentration):
    anti-CD3-Phycoerythrin-Cyanine 7 (PE-Cy7) (1/100)
    anti-CD4-Fluorescein Isothiocyanate (FITC) (1/40)
    anti-CD25-Allophycocyanin (APC) (1/40)
    anti-CD127-Phycoerythrin (PE) (1/20)
    Incubate 30 min in the dark at 4 °C
  6. Wash the cells with PBS/2% FBS. Resuspend the cells at 20 x 106/ml in PBS/2% FBS and filter them on a 35 μm nylon mesh.
  7. Using a FACS Aria cell sorter equipped for handling biohazardous material, sort the CD3+CD4+CD25+CD127low Treg in X-VIVO 15 media (see gating strategy in Figure 1). Conventional T cells (CD3+CD4+CD25-CD127+) can be isolated and expanded as negative controls.

2. Cell Culture

  1. After isolation, wash the Treg with X-VIVO 15 media.
  2. Resuspend the cells at 250 x 103/ml in X-VIVO 15 media complemented with 10% Human Serum and Penicillin-Streptomycin (50 U/ml).
  3. Wash Human T-Activator CD3/CD28 beads according to manufacturer's protocol. Add beads to isolated Tregs at a ratio of 1:1 bead per cell.
  4. After two days of culture, double the media volume and add IL-2 (300 U/ml).
  5. Culture the Tregs for 2 weeks. Change media (X-VIVO 15/Human serum/P/S/IL-2) at days 5, 7, 9, 12. Add beads at a 1:1 ratio at day 9. When changing media, keep cells at 250 x 103/ml.

3. Phenotyping

At the end of the expansion culture, expanded CD3+CD4+CD25+CD127low Treg can be phenotyped by flow cytometry and compared to expanded CD3+CD4+CD25-CD127+ conventional T cells as a control.

  1. Harvest expanded Tregs/Tconvs and wash them in PBS. Label dead cells using the LIVE/DEAD Fixable Violet Dead Cell Stain Kit according to manufacturer's protocol. Wash the cells in PBS/2% FBS.
  2. Add the following antibodies (concentration):
    anti-CD3-PECy7 (1/100)
    anti-CD4-Qdot-655 (1/200)
    anti-CD25-PECy5 (1/100)
    Incubate 30 min in the dark at 4 °C
  3. Wash the cells and perform the intracellular staining using the Foxp3/ Transcription Factor Staining Buffer Set according to manufacturer's protocol and the following antibodies:
    anti-FOXP3-PE (1/50)
    anti-HELIOS-FITC (1/40)
    anti-CTLA4-APC (1/20)
    Acquire the data on a flow cytometer.

4. Suppression Assay

At the end of the expansion culture, the suppressive function i.e. the capacity of the expanded Treg isolated from HIV-1 positive individuals to suppress the proliferation of activated T cells can be assessed in vitro.

  1. Thaw autologous cryopreserved ex vivo PBMCs. Leave them for about 3 hr in a 37 °C incubator in RPMI 1640 medium containing penicillin/streptomycin, L-glutamine, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer (=R+ media), and 10% FBS (=R10 media).
  2. Label the dead cells using the LIVE/DEAD Fixable Violet Dead Cell Stain Kit according to the manufacturer's protocol. Wash the cells in PBS/2% FBS.
  3. Incubate the cells with anti-CD3-PECy7 for 30 min in the dark at 4 °C. Wash the cells with PBS/2% FBS. Resuspend the cells in PBS/2% FBS and filter them on a 35 μm nylon mesh.
  4. Using a FACS Aria cell sorter equipped for handling biohazardous material, sort the viable CD3+ T cells in R10 media.
  5. Label the T cells with a cell tracing reagent such as CellTrace Violet or Vybrant CFDA SE Cell Tracer at 5 μM diluted in PBS for 7 min at 37 °C according to the manufacturer's protocol. Resuspend cells in R+ media supplemented with 10% human serum (=hR10 media) at 1 x 106/ml.
  6. Harvest the expanded Tregs, resuspend the cells at 0.5 x 106/ml in hR10 and prepare dilutions at 0.25 x 106/ml and 0.125 x 106/ml.
  7. Prepare anti-CD2/anti-CD3/anti-CD28 microbeads according to the manufacturer's protocol, resuspend the microbeads at 0.75 x 106/ml and prepare dilutions at 0.625, 0.562, 0.5 x 106/ml in hR10 media.
  8. In a 96 wells round bottom plate, transfer cells and beads according to the following plan:
T cells:Treg ratio1:01:1/21:1/41:1/8
T cells (50 μl)1 x 106/ml1 x 106/ml1 x 106/ml1 x 106/ml
Tregs (50 μl)no0.5 x 106/ml0.25 x 106/ml0.125 x 106/ml
Beads (100 μl)0.5 x 106/ml0.75 x 106/ml0.625 x 106/ml0.562 x 106/ml
hR10 (50 μl)yesnonono
i.e.    
T cells50 x 10350 x 10350 x 10350 x 103
Tregs025 x 10312.5 x 1036.25 x 103
Beads50 x 10375 x 10362.5 x 10356.25 x 103
  1. After 4 days of culture, wash the cells and incubate them for 30 min at 4 °C with the following antibodies:
    anti-CD3-PECy7 (1/100)
    anti-CD4-APC (1/100)
    anti-CD8-AF700 (1/100)

Acquire the data on a flow cytometer. Use the FlowJo proliferation platform to calculate the percentage of divided cells.

Результаты

The expression of interleukin 2 receptor (CD25) and the interleukin 7 receptor (CD127) have been described as reliable surface markers to identify functional Treg populations 13 and have been shown to correlate with CD4+CD25+FOXP3+ Tregs 9,12. Figure 1 represents the gating strategy used to flow-sort single CD3+CD4+CD25+CD127low Tregs from PBMC isolated from an HIV-1-positive individual. The CD25/CD127 anti...

Обсуждение

Using the protocol described above, Tregs can be successfully isolated and expanded from HIV-1-infected individuals in vitro. Expanded Tregs express high levels of FOXP3, CTLA4 and HELIOS, are highly suppressive and display a highly demethylated Treg-Specific Demethylation Region (TSDR) locus of the FOXP3 gene (data not shown) 15, suggesting true origin from the regulatory T cell lineage, as opposed to activation-induced transient FOXP3 upregulation. Deep sequencing demonstrated that the TCR repertoir...

Раскрытие информации

The authors declare that they have no competing financial interests.

Благодарности

This work was supported in part by research funding from the Elisabeth Glaser Pediatric AIDS Foundation (Pediatric HIV Vaccine Program Award MV-00-9-900-1429-0-00 to MMA), MGH/ECOR (Physician Scientist Development Award to MMA), NIH NIAID (KO8219 AI074405 and AI074405-03S1 to MMA), and the Harvard University Center for AIDS Research (CFAR), an NIH funded program (P30 AI060354) which is supported by the following NIH Co-Funding and Participating Institutes and Centers: NIAID, NCI, NICHD, NHLBI, NIDA, NIMH, NIA, FIC, and OAR. These studies were furthermore supported by the Bill & Melinda Gates Foundation and the Terry and Susan Ragon Foundation.

Материалы

NameCompanyCatalog NumberComments
RosetteSep Human CD4+ T Cell Enrichment CocktailStemcells technologies15062
PBSSigmaD8537
FBSSigmaF4135
HistopaqueSigmaH8889
Anti-CD3-PECy7BD Pharmingen557851
Anti-CD4-FITCeBioscience11-0049-42
Anti-CD25-APCeBioscience17-0259-42
Anti-CD127-PEBD Pharmingen557938
Round-Bottom tube with 35 μm a nylon meshBD Falcon352235
X-VIVO 15Lonza04-418Q
Penicillin/StreptomycinMediatech30-001-Cl
Human SerumGemini Bio-Products100-512
Human T-activator CD3/CD28Life Technologies111.31D
IL-2NIH Aids Research Reference Reagent Program136
LIVE/DEAD Fixable Violet Dead Cell Stain KitLife technologiesL34955
Anti-CD4-qdot-655Life TechnologiesQ10007
Anti-CD25-PECy5eBiosciences15-0259-42
Foxp3 / Transcription Factor Staining Buffer SeteBiosciences00-5523-00
Anti-FOXP3-PEeBiosciences12-4776-42
Anti-HELIOS-FITCBiolegend137204
Anti-CTLA4-APCBD Pharmingen555855
CellTrace Violet Cell Proliferation KitLife TechnologiesC34557
Vybrant CFDA SE Cell Tracer KitLife TechnologiesV12883
HEPESMediatech25-060-Cl
Treg Suppression inspectorMiltenyi Biotec130-092-909
Anti-CD4-APCBD Pharmingen340443
Anti-CD8-AF700BD Pharmingen557945
RPMI 1640SigmaR0883
GlutamineMediatech25-002-Cl
Materials
BD Vacutainer Blood Collection Tube w/ ACID CITRATE DEXTROSE (ACD)Becton, Dickinson and Company (BD)364606
FACSAria IIu Cell SorterBD Biosciences-
LSR II Flow CytometerBD Biosciences-
FlowJoTree Starv887

Ссылки

  1. Rerks-Ngarm, S., et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209-2220 (2009).
  2. Buchbinder, S. P., et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet. 372 (08), 1881-1893 (2008).
  3. Pitisuttithum, P., et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J. Infect. Dis. 194, 1661-1671 (2006).
  4. Morse, M. A., et al. Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood. 112, 610-618 (2008).
  5. Furuichi, Y., et al. Depletion of CD25+CD4+T cells (Tregs) enhances the HBV-specific CD8+ T cell response primed by DNA immunization. World J. Gastroenterol. 11, 3772-3777 (2005).
  6. Rech, A. J., Vonderheide, R. H. Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann. N.Y. Acad. Sci. 1174, 99-106 (2009).
  7. Ruter, J., et al. Altering regulatory T cell function in cancer immunotherapy: a novel means to boost the efficacy of cancer vaccines. Front Biosci. 14, 1761-1770 (2009).
  8. Moreno-Fernandez, M. E., Rueda, C. M., Rusie, L. K., Chougnet, C. A. Regulatory T cells control HIV replication in activated T cells through a cAMP-dependent mechanism. Blood. 117, 5372-5380 (2011).
  9. Schulze Zur Wiesch, J., et al. Comprehensive analysis of frequency and phenotype of T regulatory cells in HIV infection: CD39 expression of FoxP3+ T regulatory cells correlates with progressive disease. J. Virol. 85, 1287-1297 (2011).
  10. Kinter, A., et al. Suppression of HIV-specific T cell activity by lymph node CD25+ regulatory T cells from HIV-infected individuals. Proc. Natl. Acad. Sci. U.S.A. 104, 3390-3395 (2007).
  11. Moreno-Fernandez, M. E., Presicce, P., Chougnet, C. A. Homeostasis and function of regulatory T cells in HIV/SIV infection. J. Virol. , (2012).
  12. Angin, M., et al. Preserved Function of Regulatory T Cells in Chronic HIV-1 Infection Despite Decreased Numbers in Blood and Tissue. J. Infect. Dis. 205, 1495-1500 (2012).
  13. Seddiki, N., et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med. 203, 1693-1700 (2006).
  14. De Jager, P. L., et al. The role of the CD58 locus in multiple sclerosis. Proc. Natl. Acad. Sci. U.S.A. 106, 5264-5269 (2009).
  15. Baron, U., et al. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur. J. Immunol. 37, 2378-2389 (2007).
  16. Salomon, B., et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity. 12, 431-440 (2000).
  17. Malek, T. R., Bayer, A. L. Tolerance, not immunity, crucially depends on IL-2. Nat. Rev. Immunol. 4, 665-674 (2004).
  18. Hoffmann, P., Eder, R., Kunz-Schughart, L. A., Andreesen, R., Edinger, M. Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood. 104, 895-903 (2004).
  19. Putnam, A. L., et al. Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes. 58, 652-662 (2009).
  20. Kreijveld, E., Koenen, H. J., Hilbrands, L. B., Joosten, I. Ex vivo expansion of human CD4+ CD25high regulatory T cells from transplant recipients permits functional analysis of small blood samples. J. Immunol. Methods. 314, 103-113 (2006).
  21. Ebinuma, H., et al. Identification and in vitro expansion of functional antigen-specific CD25+ FoxP3+ regulatory T cells in hepatitis C virus infection. J Virol. 82, 5043-5053 (2008).
  22. Strauss, L., Czystowska, M., Szajnik, M., Mandapathil, M., Whiteside, T. L. Differential responses of human regulatory T cells (Treg) and effector T cells to rapamycin. PLoS ONE. 4, e5994 (2009).
  23. Heredia, A., et al. Rapamycin causes down-regulation of CCR5 and accumulation of anti-HIV beta-chemokines: an approach to suppress R5 strains of HIV-1. Proc. Natl. Acad. Sci. U.S.A. 100, 10411-10416 (1073).
  24. Hoffmann, P., et al. Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood. 108, 4260-4267 (2006).
  25. Hoffmann, P., et al. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol. 39, 1088-1097 (2009).
  26. Wang, J., Ioan-Facsinay, A., vander Voort, E. I., Huizinga, T. W., Toes, R. E. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol. 37, 129-138 (2007).
  27. Takahashi, T., et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303-310 (2000).
  28. Thornton, A. M., et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184, 3433-3441 (2010).
  29. Zheng, S. G., Gray, J. D., Ohtsuka, K., Yamagiwa, S., Horwitz, D. A. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. J. Immunol. 169, 4183-4189 (2002).
  30. Gregori, S., Roncarolo, M. G., Bacchetta, R. Methods for in vitro generation of human type 1 regulatory T cells. Methods Mol. Biol. 677, 31-46 (2011).

Перепечатки и разрешения

Запросить разрешение на использование текста или рисунков этого JoVE статьи

Запросить разрешение

Смотреть дополнительные статьи

Keywords HIV 1Regulatory T CellsTregsCD4 T CellsImmune ModulationImmunopathogenesisExpansionIn VitroFlow CytometryFOXP3CTLA4HELIOSSuppression

This article has been published

Video Coming Soon

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены