JoVE Logo

로그인

JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.

기사 소개

  • 요약
  • 초록
  • 서문
  • 프로토콜
  • 결과
  • 토론
  • 공개
  • 감사의 말
  • 자료
  • 참고문헌
  • 재인쇄 및 허가

요약

CD4+ Regulatory T cells are potent immune-modulators and serve important functions in immune homeostasis. The paucity of these cells in peripheral blood makes functional studies challenging, specifically in the context of HIV-1-infection. We here describe a method to isolate and expand functional CD4+ Tregs from peripheral blood from HIV-1-infected individuals.

초록

CD4 + 조절 T 세포 (Tregs의)는 강력한 면역 변조기이며, 인간의 면역 항상성에 중요한 기능을 제공합니다. Tregs의 고갈은 암과 전염성 병원균에 대한 백신 설정에서 항원 특이 T 세포 반응의 측정이 증가하게되었다. 그들은 하나 해로운 HIV-1과 연관된 면역 활성을 억제하는 역할을하기 때문에 HIV-1 질병의 진행을 느리게하거나 또는 HIV-1 특이 면역을 억제함으로써 바이러스를 촉진 할 수 그러나, HIV-1 면역 기전에서의 역할은 논란이 남아있다 확산. 이해와 HIV-1의 맥락에서 변조 Treg 기능은 면역 또는 HIV 백신에 대한 잠재적 인 새로운 전략으로 이어질 수 있습니다. 그러나 중요한 질문을주의 깊게 연구 할 필요가 HIV-1 감염의 맥락에서 자신의 역할에 남아 있습니다.

Treg 인구 공부, 인간 CD4 + 말초 혈액에서 T 세포의 약 5 %를 대표하는 에스 어려운 것으로 입증되었습니다pecially HIV-1 관련 CD4의 T 세포 HIV-1에 감염된 사람들과 함께하는 Treg 고갈이 발생합니다. 고급 HIV-1 질병이나 조직 샘플은 단지 매우 작은 생물 학적 샘플을 얻을 수있는, 그러므로 매우 어려운과 개인의 규제 T 세포의 특성. 우리는 HIV-1 양성 개인의 Tregs의의 분리 및 확장을 사용하여 이러한 한계를 극복 할 수있는 기술적 인 해결책을 제안한다.

여기에서 우리는 성공적으로 체외에서 HIV-1에 감염된 개인으로부터 Tregs의 격리를 확장 할 수있는 쉽고 강력한 방법을 설명합니다. 흐름 분류 CD3 + CD4 + CD25 + CD127 낮은 Tregs의이 anti-CD3/anti-CD28 코팅 구슬로 자극하고 IL-2의 면전에서 배양 하였다. 확장 Tregs의이 FOXP3 높은 수준의 CTLA4를 표현 HELIOS 기존의 T 세포에 비해 매우 억압적인 것으로 보였다. Tregs의 큰 숫자에 쉽게 접근 연구자가 난을 해결하기 위해 수HIV-1 immunopathogenesis에서 자신의 역할에 관한 mportant 질문입니다. 우리는이 질문에 대답하는 것은 효과적인 HIV-1 백신의 개발에 유용한 통찰력을 제공 할 수 있습니다 믿습니다.

서문

HIV / AIDS 전세계 새롭게 2011 년에 감염 추정 2백50만명, 세계 에이즈 전염병을 억제하는 효과적인 HIV 백신에 대한 필요성과 함께 생활 이상의 3400 만 개인과 중요 남아 있습니다. 그러나 강렬한 연구 노력의 년간에도 불구하고, 현재까지 HIV-1 백신 효능 시험은 겸손 보호를 1-3로 이어질 및 보호 면역의 상관 관계를 제대로 이해 남아 있습니다. 보호에 필요한 면역 반응의 특성을 해명하는 것은 효과적인 HIV-1 백신과 HIV-1 감염을 대상으로 다른 immunotherapeutic 전략의 전략적 설계를위한 필수적입니다.

자연적인 CD4 + 조절 T 세포 (Tregs의)는 따라서 면역 - 매개 조직의 손상을 제한, 과도한 면역 활성을 조절하여 면역 세포의 항상성 유지에 중요하다. 그러나, 그들은 또한 병원균에 대한 면역 반응을 억제하고 자신의 통관을 방지 할 수 있습니다. 암과 헤파titis B 백신 연구는 Tregs의의 활동을 감소하는 백신 반응과 바이러스에 4-7에 대한 항원 특이 면역을 향상시킬 수 있음을 증명하고있다. 그러나 HIV-1 감염의 맥락에서, 규제 T 세포의 정확한 영향은 불완전하게 이해 남아있다. Tregs의이 활성화 된 T 세포 8 바이러스 복제를 감소 그리고 아마도 면역 활성화 9 영향을 표시했다. 그들은 또한 질병의 진행 10,11에 대한 부정적인 결과가있을 수 HIV-1 특이 면역 반응을 억제하기 위해 표시되었습니다. 따라서, HIV-1 백신의 효능을 강화하는 Treg 활동을 조절 할 수되기 전에,이 질병의 맥락에서 그들의 기능에 추가 통찰력을 얻을 것이 중요합니다.

인간 CD4 + 조절 T 세포는 약 5 CD4의 % + 말초 혈액에서 T 세포, 그리고 추가로 절대 숫자 HIV-관련 CD4 + T 세포 고갈 12와 감소를 나타내는 상대적으로 부족한 세포 인구입니다 </>을 먹다. 공동 문화를 Treg와 같은 T 세포 증식 분석으로 Treg 기능을 평가하는 현재의 분석은 비교적 큰 세포 수에게 12을 사용합니다. 따라서 진보와 개인에 규제 T 세포의 기능과 특이성을 특성화 HIV-1 질병은 HIV 병인에 대한 자신의 중요성에도 불구하고, 도전하고있다.

HIV-1 환자에서 Tregs의의 생체 분리 및 확장은 이러한 제한을 극복 할 수있는 솔루션을 나타낼 수 있습니다. 여기에서 우리는 체외에서 HIV-1에 감염된 사람에서 파생 된 기능 Tregs의 검색을 확장 할 수있는 쉽고 강력한 프로토콜을 설명합니다, 우리는 더 이상 어떻게 표현형을 해석하고 유세포 분석을 사용하여 억제 기능을 테스트합니다. 우리는이 프로토콜은 Tregs의 접근을 용이하게하고 HIV-1 질병의 진행에서 자신의 역할을 이해하는 데 도움이됩니다 믿습니다.

프로토콜

1. Regulatory T cell isolation from HIV-1 Positive Blood

  1. Carefully transfer blood, collected in ACD tubes, into a 50 ml conical tube for a final volume of 15 ml blood per tube.
  2. Add 25 μl/ml of blood of RosetteSep Human CD4+ T Cell Enrichment Cocktail, mix carefully and incubate 20 min at room temperature.
  3. Add 15 ml of PBS/2% FBS to the blood and mix carefully. Layer the diluted blood sample on top of 15 ml of Histopaque at room temperature in a 50 ml conical tube. Spin the conical tube for 20 min at 1,200 x g with a slow start and no brakes.
  4. Transfer the CD4+ T cell enriched PBMC layer in a new 50 ml conical tube, wash the cells by adding PBS/2% FBS and spin them down for 10 min at 1,200 x g. Then count the cells, wash again and resuspend the cells at about 20 x 106/200 μl.
  5. Add the following antibodies (concentration):
    anti-CD3-Phycoerythrin-Cyanine 7 (PE-Cy7) (1/100)
    anti-CD4-Fluorescein Isothiocyanate (FITC) (1/40)
    anti-CD25-Allophycocyanin (APC) (1/40)
    anti-CD127-Phycoerythrin (PE) (1/20)
    Incubate 30 min in the dark at 4 °C
  6. Wash the cells with PBS/2% FBS. Resuspend the cells at 20 x 106/ml in PBS/2% FBS and filter them on a 35 μm nylon mesh.
  7. Using a FACS Aria cell sorter equipped for handling biohazardous material, sort the CD3+CD4+CD25+CD127low Treg in X-VIVO 15 media (see gating strategy in Figure 1). Conventional T cells (CD3+CD4+CD25-CD127+) can be isolated and expanded as negative controls.

2. Cell Culture

  1. After isolation, wash the Treg with X-VIVO 15 media.
  2. Resuspend the cells at 250 x 103/ml in X-VIVO 15 media complemented with 10% Human Serum and Penicillin-Streptomycin (50 U/ml).
  3. Wash Human T-Activator CD3/CD28 beads according to manufacturer's protocol. Add beads to isolated Tregs at a ratio of 1:1 bead per cell.
  4. After two days of culture, double the media volume and add IL-2 (300 U/ml).
  5. Culture the Tregs for 2 weeks. Change media (X-VIVO 15/Human serum/P/S/IL-2) at days 5, 7, 9, 12. Add beads at a 1:1 ratio at day 9. When changing media, keep cells at 250 x 103/ml.

3. Phenotyping

At the end of the expansion culture, expanded CD3+CD4+CD25+CD127low Treg can be phenotyped by flow cytometry and compared to expanded CD3+CD4+CD25-CD127+ conventional T cells as a control.

  1. Harvest expanded Tregs/Tconvs and wash them in PBS. Label dead cells using the LIVE/DEAD Fixable Violet Dead Cell Stain Kit according to manufacturer's protocol. Wash the cells in PBS/2% FBS.
  2. Add the following antibodies (concentration):
    anti-CD3-PECy7 (1/100)
    anti-CD4-Qdot-655 (1/200)
    anti-CD25-PECy5 (1/100)
    Incubate 30 min in the dark at 4 °C
  3. Wash the cells and perform the intracellular staining using the Foxp3/ Transcription Factor Staining Buffer Set according to manufacturer's protocol and the following antibodies:
    anti-FOXP3-PE (1/50)
    anti-HELIOS-FITC (1/40)
    anti-CTLA4-APC (1/20)
    Acquire the data on a flow cytometer.

4. Suppression Assay

At the end of the expansion culture, the suppressive function i.e. the capacity of the expanded Treg isolated from HIV-1 positive individuals to suppress the proliferation of activated T cells can be assessed in vitro.

  1. Thaw autologous cryopreserved ex vivo PBMCs. Leave them for about 3 hr in a 37 °C incubator in RPMI 1640 medium containing penicillin/streptomycin, L-glutamine, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer (=R+ media), and 10% FBS (=R10 media).
  2. Label the dead cells using the LIVE/DEAD Fixable Violet Dead Cell Stain Kit according to the manufacturer's protocol. Wash the cells in PBS/2% FBS.
  3. Incubate the cells with anti-CD3-PECy7 for 30 min in the dark at 4 °C. Wash the cells with PBS/2% FBS. Resuspend the cells in PBS/2% FBS and filter them on a 35 μm nylon mesh.
  4. Using a FACS Aria cell sorter equipped for handling biohazardous material, sort the viable CD3+ T cells in R10 media.
  5. Label the T cells with a cell tracing reagent such as CellTrace Violet or Vybrant CFDA SE Cell Tracer at 5 μM diluted in PBS for 7 min at 37 °C according to the manufacturer's protocol. Resuspend cells in R+ media supplemented with 10% human serum (=hR10 media) at 1 x 106/ml.
  6. Harvest the expanded Tregs, resuspend the cells at 0.5 x 106/ml in hR10 and prepare dilutions at 0.25 x 106/ml and 0.125 x 106/ml.
  7. Prepare anti-CD2/anti-CD3/anti-CD28 microbeads according to the manufacturer's protocol, resuspend the microbeads at 0.75 x 106/ml and prepare dilutions at 0.625, 0.562, 0.5 x 106/ml in hR10 media.
  8. In a 96 wells round bottom plate, transfer cells and beads according to the following plan:
T cells:Treg ratio1:01:1/21:1/41:1/8
T cells (50 μl)1 x 106/ml1 x 106/ml1 x 106/ml1 x 106/ml
Tregs (50 μl)no0.5 x 106/ml0.25 x 106/ml0.125 x 106/ml
Beads (100 μl)0.5 x 106/ml0.75 x 106/ml0.625 x 106/ml0.562 x 106/ml
hR10 (50 μl)yesnonono
i.e.    
T cells50 x 10350 x 10350 x 10350 x 103
Tregs025 x 10312.5 x 1036.25 x 103
Beads50 x 10375 x 10362.5 x 10356.25 x 103
  1. After 4 days of culture, wash the cells and incubate them for 30 min at 4 °C with the following antibodies:
    anti-CD3-PECy7 (1/100)
    anti-CD4-APC (1/100)
    anti-CD8-AF700 (1/100)

Acquire the data on a flow cytometer. Use the FlowJo proliferation platform to calculate the percentage of divided cells.

결과

The expression of interleukin 2 receptor (CD25) and the interleukin 7 receptor (CD127) have been described as reliable surface markers to identify functional Treg populations 13 and have been shown to correlate with CD4+CD25+FOXP3+ Tregs 9,12. Figure 1 represents the gating strategy used to flow-sort single CD3+CD4+CD25+CD127low Tregs from PBMC isolated from an HIV-1-positive individual. The CD25/CD127 anti...

토론

Using the protocol described above, Tregs can be successfully isolated and expanded from HIV-1-infected individuals in vitro. Expanded Tregs express high levels of FOXP3, CTLA4 and HELIOS, are highly suppressive and display a highly demethylated Treg-Specific Demethylation Region (TSDR) locus of the FOXP3 gene (data not shown) 15, suggesting true origin from the regulatory T cell lineage, as opposed to activation-induced transient FOXP3 upregulation. Deep sequencing demonstrated that the TCR repertoir...

공개

The authors declare that they have no competing financial interests.

감사의 말

This work was supported in part by research funding from the Elisabeth Glaser Pediatric AIDS Foundation (Pediatric HIV Vaccine Program Award MV-00-9-900-1429-0-00 to MMA), MGH/ECOR (Physician Scientist Development Award to MMA), NIH NIAID (KO8219 AI074405 and AI074405-03S1 to MMA), and the Harvard University Center for AIDS Research (CFAR), an NIH funded program (P30 AI060354) which is supported by the following NIH Co-Funding and Participating Institutes and Centers: NIAID, NCI, NICHD, NHLBI, NIDA, NIMH, NIA, FIC, and OAR. These studies were furthermore supported by the Bill & Melinda Gates Foundation and the Terry and Susan Ragon Foundation.

자료

NameCompanyCatalog NumberComments
RosetteSep Human CD4+ T Cell Enrichment CocktailStemcells technologies15062
PBSSigmaD8537
FBSSigmaF4135
HistopaqueSigmaH8889
Anti-CD3-PECy7BD Pharmingen557851
Anti-CD4-FITCeBioscience11-0049-42
Anti-CD25-APCeBioscience17-0259-42
Anti-CD127-PEBD Pharmingen557938
Round-Bottom tube with 35 μm a nylon meshBD Falcon352235
X-VIVO 15Lonza04-418Q
Penicillin/StreptomycinMediatech30-001-Cl
Human SerumGemini Bio-Products100-512
Human T-activator CD3/CD28Life Technologies111.31D
IL-2NIH Aids Research Reference Reagent Program136
LIVE/DEAD Fixable Violet Dead Cell Stain KitLife technologiesL34955
Anti-CD4-qdot-655Life TechnologiesQ10007
Anti-CD25-PECy5eBiosciences15-0259-42
Foxp3 / Transcription Factor Staining Buffer SeteBiosciences00-5523-00
Anti-FOXP3-PEeBiosciences12-4776-42
Anti-HELIOS-FITCBiolegend137204
Anti-CTLA4-APCBD Pharmingen555855
CellTrace Violet Cell Proliferation KitLife TechnologiesC34557
Vybrant CFDA SE Cell Tracer KitLife TechnologiesV12883
HEPESMediatech25-060-Cl
Treg Suppression inspectorMiltenyi Biotec130-092-909
Anti-CD4-APCBD Pharmingen340443
Anti-CD8-AF700BD Pharmingen557945
RPMI 1640SigmaR0883
GlutamineMediatech25-002-Cl
Materials
BD Vacutainer Blood Collection Tube w/ ACID CITRATE DEXTROSE (ACD)Becton, Dickinson and Company (BD)364606
FACSAria IIu Cell SorterBD Biosciences-
LSR II Flow CytometerBD Biosciences-
FlowJoTree Starv887

참고문헌

  1. Rerks-Ngarm, S., et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209-2220 (2009).
  2. Buchbinder, S. P., et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet. 372 (08), 1881-1893 (2008).
  3. Pitisuttithum, P., et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J. Infect. Dis. 194, 1661-1671 (2006).
  4. Morse, M. A., et al. Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood. 112, 610-618 (2008).
  5. Furuichi, Y., et al. Depletion of CD25+CD4+T cells (Tregs) enhances the HBV-specific CD8+ T cell response primed by DNA immunization. World J. Gastroenterol. 11, 3772-3777 (2005).
  6. Rech, A. J., Vonderheide, R. H. Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann. N.Y. Acad. Sci. 1174, 99-106 (2009).
  7. Ruter, J., et al. Altering regulatory T cell function in cancer immunotherapy: a novel means to boost the efficacy of cancer vaccines. Front Biosci. 14, 1761-1770 (2009).
  8. Moreno-Fernandez, M. E., Rueda, C. M., Rusie, L. K., Chougnet, C. A. Regulatory T cells control HIV replication in activated T cells through a cAMP-dependent mechanism. Blood. 117, 5372-5380 (2011).
  9. Schulze Zur Wiesch, J., et al. Comprehensive analysis of frequency and phenotype of T regulatory cells in HIV infection: CD39 expression of FoxP3+ T regulatory cells correlates with progressive disease. J. Virol. 85, 1287-1297 (2011).
  10. Kinter, A., et al. Suppression of HIV-specific T cell activity by lymph node CD25+ regulatory T cells from HIV-infected individuals. Proc. Natl. Acad. Sci. U.S.A. 104, 3390-3395 (2007).
  11. Moreno-Fernandez, M. E., Presicce, P., Chougnet, C. A. Homeostasis and function of regulatory T cells in HIV/SIV infection. J. Virol. , (2012).
  12. Angin, M., et al. Preserved Function of Regulatory T Cells in Chronic HIV-1 Infection Despite Decreased Numbers in Blood and Tissue. J. Infect. Dis. 205, 1495-1500 (2012).
  13. Seddiki, N., et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med. 203, 1693-1700 (2006).
  14. De Jager, P. L., et al. The role of the CD58 locus in multiple sclerosis. Proc. Natl. Acad. Sci. U.S.A. 106, 5264-5269 (2009).
  15. Baron, U., et al. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur. J. Immunol. 37, 2378-2389 (2007).
  16. Salomon, B., et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity. 12, 431-440 (2000).
  17. Malek, T. R., Bayer, A. L. Tolerance, not immunity, crucially depends on IL-2. Nat. Rev. Immunol. 4, 665-674 (2004).
  18. Hoffmann, P., Eder, R., Kunz-Schughart, L. A., Andreesen, R., Edinger, M. Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood. 104, 895-903 (2004).
  19. Putnam, A. L., et al. Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes. 58, 652-662 (2009).
  20. Kreijveld, E., Koenen, H. J., Hilbrands, L. B., Joosten, I. Ex vivo expansion of human CD4+ CD25high regulatory T cells from transplant recipients permits functional analysis of small blood samples. J. Immunol. Methods. 314, 103-113 (2006).
  21. Ebinuma, H., et al. Identification and in vitro expansion of functional antigen-specific CD25+ FoxP3+ regulatory T cells in hepatitis C virus infection. J Virol. 82, 5043-5053 (2008).
  22. Strauss, L., Czystowska, M., Szajnik, M., Mandapathil, M., Whiteside, T. L. Differential responses of human regulatory T cells (Treg) and effector T cells to rapamycin. PLoS ONE. 4, e5994 (2009).
  23. Heredia, A., et al. Rapamycin causes down-regulation of CCR5 and accumulation of anti-HIV beta-chemokines: an approach to suppress R5 strains of HIV-1. Proc. Natl. Acad. Sci. U.S.A. 100, 10411-10416 (1073).
  24. Hoffmann, P., et al. Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood. 108, 4260-4267 (2006).
  25. Hoffmann, P., et al. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol. 39, 1088-1097 (2009).
  26. Wang, J., Ioan-Facsinay, A., vander Voort, E. I., Huizinga, T. W., Toes, R. E. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol. 37, 129-138 (2007).
  27. Takahashi, T., et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303-310 (2000).
  28. Thornton, A. M., et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184, 3433-3441 (2010).
  29. Zheng, S. G., Gray, J. D., Ohtsuka, K., Yamagiwa, S., Horwitz, D. A. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. J. Immunol. 169, 4183-4189 (2002).
  30. Gregori, S., Roncarolo, M. G., Bacchetta, R. Methods for in vitro generation of human type 1 regulatory T cells. Methods Mol. Biol. 677, 31-46 (2011).

재인쇄 및 허가

JoVE'article의 텍스트 или 그림을 다시 사용하시려면 허가 살펴보기

허가 살펴보기

더 많은 기사 탐색

Keywords HIV 1Regulatory T CellsTregsCD4 T CellsImmune ModulationImmunopathogenesisExpansionIn VitroFlow CytometryFOXP3CTLA4HELIOSSuppression

This article has been published

Video Coming Soon

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유