Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
В эпоху иммунотерапии и одноклеточного геномного профилирования биология рака требует новых in vitro и вычислительных инструментов для исследования опухолево-иммунного интерфейса в надлежащем пространственно-временном контексте. Мы описываем протоколы для использования опухолево-иммунных микрофлюидных кокультур в 2D и 3D условиях, совместимых с динамическим многопараметрическим мониторингом клеточных функций.
Сложные модели заболеваний требуют передовых инструментов, способных предоставить физиологически и патологически значимые, действенные идеи и раскрыть невидимые в противном случае процессы. Продвинутые клеточные анализы, близко имитирующие декорации in vivo, зарекомендовали себя как новые способы визуализации и измерения двунаправленного взаимодействия опухоли и хозяина, влияющего на прогрессирование рака. Здесь мы описываем два универсальных протокола для воссоздания высококонтролируемых 2D и 3D кокультур в микроустройствах, имитирующих сложность микроокружения опухоли (TME), при естественном и индуцированном терапией иммунонаблюдении. В разделе 1 представлена экспериментальная установка для мониторинга перекрестных помех между адгезивными опухолевыми клетками и плавающими иммунными популяциями с помощью покадровой микроскопии светлого поля. В качестве практического сценария мы анализируем влияние противораковых препаратов, таких как так называемые иммуногенные индукторы гибели раковых клеток, на рекрутирование и активацию иммунных клеток. В разделе 2 3D-иммунные к опухоли микросреды собраны в конкурентной компоновке. Дифференциальная иммунная инфильтрация контролируется с помощью флуоресцентных снимков продолжительностью до 72 часов для оценки комбинированных терапевтических стратегий. В обоих случаях проиллюстрированы этапы обработки изображений для извлечения множества параметров иммунных клеток (например, миграция и взаимодействие иммунных клеток, реакция на терапевтические агенты). Эти простые и мощные методы могут быть дополнительно адаптированы для моделирования сложности TME, охватывающей гетерогенность и пластичность подтипов раковых, стромальных и иммунных клеток, а также их взаимные взаимодействия как движущие силы эволюции рака. Соответствие этих быстро развивающихся технологий изображениям с высоким содержанием живых клеток может привести к созданию больших информативных наборов данных, что порождает новые проблемы. Действительно, треугольник «кокультуры/микроскопия/расширенный анализ данных» прокладывает путь к точной параметризации проблемы, которая может помочь в разработке индивидуальных терапевтических протоколов. Мы ожидаем, что будущая интеграция противораковых технологий на чипе с искусственным интеллектом для высокопроизводительной обработки станет большим шагом вперед в использовании возможностей в качестве прогностических и доклинических инструментов для точной и персонализированной онкологии.
Эволюция различных отраслей медицины как экспериментальных дисциплин зависела от способности манипулировать клеточной популяцией и функциями органов в контролируемых условиях1. Такая способность уходит своими корнями в наличие измеримых моделей, способных повторять процессы, происходящие в нашем организме.
В эпоху иммунотерапии и одноклеточного геномного профилирования 2 биология рака должна использовать преимущества новых in vitro и вычислительных моделей для исследования интерфейса опухоль-иммунитет в надлежащем пространственно-временном контексте 2,3.
1. Дизайн чипа для адгезивных и плавающих клеток 2D-кокультур
ПРИМЕЧАНИЕ: Схема 2D-культуры (рис. 1A-C) характеризуется тремя камерами (высотой 100 мкм), соединенными между собой двумя наборами микроканальных массивов (500 x 12 x 10мкм 3, Д×Ш×В). Промежуточная камера образует два закрытых тупиковых компартмента, которые блокируют плавающие иммунные клетки, переполняющие место опухоли на этапе загрузки 2.5. Этот тип устройства полезен для двумерных измерений подвижности отдельных клеток (как адгезивных, так и плавающих) в режи....
Иммунная инфильтрация опухоли является параметром противоопухолевого ответа хозяина. Опухоли неоднородны по составу, плотности, расположению и функциональному состоянию инфильтрирующих лейкоцитов, взаимодействие которых с раковыми клетками может лежать в основе клинически значим?.......
Описанные методы пытаются разработать общий подход к повторению, с модулируемой степенью сложности, двух важных аспектов в области онкоиммунологии, которые могут выиграть от принятия более актуальных моделей in vitro. Первый включает в себя сторону популяции опухолевых клеток, где устра?.......
Авторам раскрывать нечего. AS поддерживается Fondazione Italiana per la Ricerca sul Cancro (AIRC, Start-Up 2016 #18418) и Ministero Italiano della Salute (RF_GR-2013-02357273). GS и FM поддерживаются Итальянской ассоциацией исследований рака (AIRC) No 21366 для G.S.).
Name | Company | Catalog Number | Comments |
Cell culture materials | |||
50 mL tubes | Corning-Sigma Aldrich, St. Louis, MO | CLS430828 | centrifuge tubes |
5-aza-2'-deoxycytidine DAC | Millipore-Sigma; St. Louis, MO | A3656 | DNA-hypomethylating agent |
6-well plates | Corning-Sigma Aldrich, St. Louis, MO | CLS3506 | culture dishes |
75 cm2 cell culture treated flask | Corning, New York, NY | 430641U | culture flasks |
A365M | American Type Culture Collection (ATCC), Manassas, VA | CVCL_B222 | human melanoma cell line |
Doxorubicin hydrochloride | Millipore-Sigma; St. Louis, MO | D1515 | anthracycline antibiotic |
Dulbecco's Modified Eagle Medium DMEM | EuroClone Spa, Milan, Italy | ECM0728L | Culture medium for SK-MEL-28 cells |
Dulbecco's Phosphate Buffer Saline w/o Calcium w/o Magnesium | EuroClone Spa, Milan, Italy | ECB4004L | saline buffer solution |
Fetal Bovine Serum | EuroClone Spa, Milan, Italy | ECS0180L | ancillary for cell culture |
Ficoll | GE-Heathcare | 17-1440-02 | separation of mononuclear cells from human blood. |
hemocytometer | Neubauer | Cell counter | |
Heparinized vials | Thermo Fisher Scientific Inc., Waltham, MA | Vials for venous blood collection | |
interferon alpha-2b | Millipore-Sigma; St. Louis, MO | SRP4595 | recombinant human cytokine |
L-Glutamine 100X | EuroClone Spa, Milan, Italy | ECB3000D | ancillary for cell culture |
Liquid nitrogen | |||
Lympholyte cell separation media | Cedarlane Labs, Burlington, Canada | Separation of lymphocytes by density gradient centrifugation | |
Lymphoprep | Axis-Shield PoC AS, Oslo, Norway | ||
Matrigel | Corning, New York, NY | 354230 | growth factor reduced basement membrane matrix |
MDA-MB-231 | American Type Culture Collection (ATCC), Manassas, VA | HTB-26 | human breast cancer cell line |
Penicillin/ Streptomycin 100X | EuroClone Spa, Milan, Italy | ECB3001D | ancillary for cell culture |
Pipet aid | Drummond Scientific Co., Broomall, PA | 4-000-201 | Liquid handling |
PKH26 Red Fluorescent cell linker | Millipore-Sigma; St. Louis, MO | PKH26GL | red fluorescent cell dye |
PKH67 Green fluorescent cell linker | Millipore-Sigma; St. Louis, MO | PKH67GL | green fluorescent cell dye |
RPMI-1640 | EuroClone Spa, Milan, Italy | ECM2001L | Culture medium for MDA-MB-231 cells |
serological pipettes (2 mL, 5 mL, 10 mL, 25 mL, 50 mL) | Corning- Millipore-Sigma; St. Louis, MO | CLS4486; CLS4487; CLS4488; CLS4489; CLS4490 | Liquid handling |
sterile tips (1-10 μL, 10-20 μL, 20-200 μL, 1000 μL) | EuroClone Spa, Milan, Italy | ECTD00010; ECTD00020; ECTD00200; ECTD01005 | tips for micropipette |
Timer | |||
Trypan Blue solution | Thermo Fisher Scientific Inc., Waltham, MA | 15250061 | cell stain to assess cell viability |
Trypsin | EuroClone Spa, Milan, Italy | ECM0920D | dissociation reagent for adherent cells |
Cell culture equipment | |||
EVOS-FL fluorescence microscope | Thermo Fisher Scientific Inc., Waltham, MA | Fluorescent microscope for living cells | |
Humified cell culture incubator | Thermo Fisher Scientific Inc., Waltham, MA | 311 Forma Direct Heat COIncubator; TC 230 | Incubation of cell cultures at 37 °C, 5% CO2 |
Juli Microscope | Nanoentek | ||
Laboratory refrigerator (4 °C) | FDM | ||
Laboratory Safety Cabinet (Class II) | Steril VBH 72 MP | Laminar flow hood | |
Optical microscope | Zeiss | ||
Refrigerable centrifuge | Beckman Coulter | ||
Thermostatic bath | |||
Microfabrication materials | |||
3-Aminopropyl)triethoxysilane (Aptes) | Sigma Aldrich | A3648 | silanizing agent for bonding PDMS to plastic coverslip |
Chromium quartz masks / 4"x4", HRC / No AZ | MB W&A, Germany | optical masks for photolithography | |
Glass coverslip, D 263 M Schott glass, (170 ± 5 µm) | Ibidi, Germany | 10812 | |
Hydrogen Peroxide solution 30% | Carlo Erba Reagents | 412081 | reagents for piranha solution |
Methyl isobutyl ketone | Carlo Erba Reagents | 461945 | PMMA e-beam resist developer |
Microscope Glass Slides (Pack of 50 slides) 76.2 mm x 25.4 mm | Sail Brand | 7101 | substrates for bonding chips |
Miltex Biopsy Punch with Plunger, ID 1.0mm | Tedpella | dermal biopsy punches for chip reservoirs | |
PMMA 950 kDa | Allresist,Germany | AR-P. 679.04 | Positive electronic resists for patterning optical masks |
Polymer untreated coverslips | Ibidi, Germany | 10813 | substrates for bonding chips |
Prime CZ-Si Wafer, 4”, (100), Boron Doped | Gambetti Xenologia Srl, Italy | 30255 | |
Propan-2-ol | Carlo Erba Reagents | 415238 | |
Propylene glycol monomethyl ether acetate (PGMEA) | Sigma Aldrich | 484431-4L | SU-8 resists developer |
SU-8 3005 | Micro resist technology,Germany | C1.02.003-0001 | Negative Photoresists |
SU-8 3050 | Micro resist technology,Germany | C1.02.003-0005 | Negative Photoresists |
Suite of Biopunch, ID 4.0 mm, 6.0 mm, 8.0 mm | Tedpella | 15111-40, 15111-60, 15111-80 | dermal biopsy punches for chip reservoirs |
Sulfuric acid 96% | Carlo Erba Reagents | 410381 | reagents for piranha solution |
SYLGARD 184 Silicone Elastomer Kit | Dowsil, Dow Corning | 11-3184-01 | Silicone Elastomer (PDMS) |
Trimethylchlorosilane (TMCS) | Sigma Aldrich | 92360-100ML | silanizing agent for SU-8 patterned masters |
Microfabrication equipment | |||
100 kV e-beam litography | Raith-Vistec EBPG 5HR | ||
hotplate | |||
Optical litography system | EV-420 double-face contact mask-aligner | ||
Reactive Ion Etching system | Oxford plasmalab 80 plus system | ||
Vacuum dessicator |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены