Sign In

A type of Lewis acid-base chemistry involves the formation of a complex ion (or a coordination complex) comprising a central atom, typically a transition metal cation, surrounded by ions or molecules called ligands. These ligands can be neutral molecules like H2O or NH3, or ions such as CN or OH. Often, the ligands act as Lewis bases, donating a pair of electrons to the central atom. These types of Lewis acid-base reactions are examples of a broad subdiscipline called coordination chemistry—the topic of another chapter in this text.

The equilibrium constant for the reaction of a metal ion with one or more ligands to form a coordination complex is called a formation constant (Kf) (sometimes called a stability constant). For example, the complex ion [Cu(CN)2] is produced by the reaction

Eq1

The formation constant for this reaction is

Eq2

Alternatively, the reverse reaction (decomposition of the complex ion) can be considered, in which case the equilibrium constant is a dissociation constant (Kd). As per the relation between equilibrium constants for reciprocal reactions described, the dissociation constant is the mathematical inverse of the formation constant, Kd = Kf−1.

As an example of dissolution by complex ion formation, consider what happens when aqueous ammonia is added to a mixture of silver chloride and water. Silver chloride dissolves slightly in water, giving a small concentration of Ag+ ([Ag+] = 1.3 × 10−5 M):

Eq3

However, if NH3 is present in the water, the complex ion, [Ag(NH3)2]+, can form according to the equation:

Eq4

This text is adapted from Openstax, Chemistry 2e, Section 15.2: Lewis Acids and Bases.

Tags

Complex IonsMetal IonsLewis BasesLewis AcidsLigandHexammine Cobalt III ChlorideTransition Metal IonsEquilibrium ConstantFormation ConstantSolubilitySparingly Soluble Metal SaltsSilver SulfideSodium Cyanide SolutionDicyanoargentate Ions

From Chapter 16:

article

Now Playing

16.12 : Vorming van Complexe Ionen

Zuur-Base Evenwicht

22.9K Views

article

16.1 : Gemeenschappelijke Ioneffect

Zuur-Base Evenwicht

40.5K Views

article

16.2 : Buffers

Zuur-Base Evenwicht

162.8K Views

article

16.3 : Henderson-Hasselbalch Vergelijking

Zuur-Base Evenwicht

67.5K Views

article

16.4 : Berekenen van Veranderingen in pH in een Bufferoplossing

Zuur-Base Evenwicht

52.1K Views

article

16.5 : Effectiviteit van Buffers

Zuur-Base Evenwicht

48.1K Views

article

16.6 : Berekenen van Titraties: Sterk Zuur - Sterke Base

Zuur-Base Evenwicht

28.6K Views

article

16.7 : Berekenen van Titraties: Zwak Zuur - Zwakke Base

Zuur-Base Evenwicht

43.1K Views

article

16.8 : Indicatoren

Zuur-Base Evenwicht

47.4K Views

article

16.9 : Titratie van een Polyprotisch Zuur

Zuur-Base Evenwicht

95.3K Views

article

16.10 : Oplosbaarheidsproduct

Zuur-Base Evenwicht

50.9K Views

article

16.11 : Factoren die de Oplosbaarheid Beïnvloeden

Zuur-Base Evenwicht

32.7K Views

article

16.13 : Neerslag van Ionen

Zuur-Base Evenwicht

27.3K Views

article

16.14 : Kwalitatieve Analyse

Zuur-Base Evenwicht

19.7K Views

article

16.15 : Zuur-base Titratiecurven

Zuur-Base Evenwicht

125.1K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved