Studying stress transformation is essential in understanding how stress components within a material, like a cube under plane stress, change with rotation. This change is analyzed by considering a prismatic element within the cube. As the element rotates, the stress components acting on it—both normal and shearing stresses—change in magnitude and orientation. This change is quantified using trigonometric functions of the rotation angle, relating the forces acting on the rotated element's faces to those on its original perpendicular faces.
The equilibrium equations, formulated by considering only the forces on faces perpendicular to the principal axes (excluding any forces on the triangular faces due to rotation), enable the derivation of new stress components. The normal and shearing stresses are re-expressed in terms of the original stresses.
A new expression for normal stress on the rotated vertical axis is obtained by replacing the rotation angle in a previous expression with a new one.
A notable outcome of this analysis is that the sum of normal stresses does not change regardless of the orientation of the cubic element. This invariance highlights the material's isotropic response to external stresses and is crucial for predicting material behavior under different loading conditions. Understanding how stress components transform with element orientation is vital for predicting material failure modes and designing materials and structures that are more resilient to applied loads.
From Chapter 23:
Now Playing
Transformations of Stress and Strain
115 Views
Transformations of Stress and Strain
127 Views
Transformations of Stress and Strain
111 Views
Transformations of Stress and Strain
144 Views
Transformations of Stress and Strain
124 Views
Transformations of Stress and Strain
87 Views
Transformations of Stress and Strain
83 Views
Transformations of Stress and Strain
276 Views
Transformations of Stress and Strain
113 Views
Transformations of Stress and Strain
86 Views
Copyright © 2025 MyJoVE Corporation. All rights reserved