A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We synthesized star shaped gold nanostars using a silver seed mediated growth method. The diameter of the nanostars ranges from 200 to 300 nm and the number of tips vary from 7 to 10. The nanoparticles have a broad surface plasmon resonance mode centered in the near infrared.
The physical, chemical and optical properties of nano-scale colloids depend on their material composition, size and shape 1-5. There is a great interest in using nano-colloids for photo-thermal ablation, drug delivery and many other biomedical applications 6. Gold is particularly used because of its low toxicity 7-9. A property of metal nano-colloids is that they can have a strong surface plasmon resonance 10. The peak of the surface plasmon resonance mode depends on the structure and composition of the metal nano-colloids. Since the surface plasmon resonance mode is stimulated with light there is a need to have the peak absorbance in the near infrared where biological tissue transmissivity is maximal 11, 12.
We present a method to synthesize star shaped colloidal gold, also known as star shaped nanoparticles 13-15 or nanostars 16. This method is based on a solution containing silver seeds that are used as the nucleating agent for anisotropic growth of gold colloids 17-22. Scanning electron microscopy (SEM) analysis of the resulting gold colloid showed that 70 % of the nanostructures were nanostars. The other 30 % of the particles were amorphous clusters of decahedra and rhomboids. The absorbance peak of the nanostars was detected to be in the near infrared (840 nm). Thus, our method produces gold nanostars suitable for biomedical applications, particularly for photo-thermal ablation.
1. Silver seed preparation
2. Growth solution preparation
3. Separating gold nanostars from CTAB for imaging, characterization or experimentation
Note: CTAB may crystallize at room temperature. To dissolve the crystals heat up the gold colloid to 30°C or immerse the vial in hot tap-water until the crystals dissolve.
4. Representative results:
Figure 1 shows transmission electron microscope (TEM) images of the silver seeds imaged using a JEOL 2010-F TEM. The seeds have a spherical shape and an average size of 15 nm. Gold nanostars are imaged using a Hitachi S-5500 in scanning electron microscope (SEM) mode. Figure 2 shows increasing magnifications of the nanostars synthesized with our method. Star shaped particles are approximately 70 % of all the particles in the colloid. Non-formed stars appear like amorphous clusters of decahedra and rhomboids (not shown). Figure 3 shows several single gold nanostars. The size of the nanostars ranges from 200 nm to 300 nm and the number of tips vary from 7 to 10. If the gold nanoparticles synthesized by this method are left in CTAB they retain their shape for at least 1 month after synthesis.
We measured the absorption spectra of the silver seeds and nanostars using an Olis Cary-14 spectrophotometer. The peak absorption of the seeds was at 400 nm, while the peak absorption of the nanostars was between 800 nm and 850 nm (Figure 4).
Figure 1. Transmission electron microscope images of silver seeds.
Figure 2. Scanning electron microscope images of gold nanostars.
Figure 3. Scanning electron microscope images of single gold nanostars.
Figure 4. Normalized absorption spectra of silver seeds (dashed line) and gold nanostars (solid line).
In this work we have presented a method to synthesize gold nanostars using silver seeds. We found that silver seeds resulted in a yield of 70 % production of nanostars. The nanostars have a near infrared absorption peak, corresponding to their surface plasmon resonance mode, centered between 800 nm and 850 nm 7, 23. These properties properties allow our gold nanostars to be of use for biomedical applications 24-26, such as photo-thermal ablation.
A major difference betwe...
No conflicts of interest declared.
This research was supported by the National Science Foundation Partnerships for Research and Education in Materials (PREM) Grant No. DMR-0934218. It was also supported by Award Number 2G12RR013646-11 from the National Center For Research Resources. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center For Research Resources or the National Institutes of Health.
Name | Company | Catalog Number | Comments |
Name of the reagent | Company | Catalogue number | Purity |
Sodium citrate tribasic dehydrate | Sigma | S4641 | 99.0 % |
Silver nitrate | Aldrich | 204390 | 99.9999 % |
Sodium borohydride | Aldrich | 213462 | 99 % |
L-Ascorbic acid | Sigma-Aldrich | 255564 | 99+ % |
Gold chloride trihydrate | Aldrich | 520918 | 99.9+ % |
Hexadecyltrimethylammonium bromide (CTAB) | Sigma | H6269 |
Name of equipment | Company | Comments |
JEOL 2010-F | JEOL | Transmission electron microscope |
Hitachi S-5500 | Hitachi | Used in scanning electron microscope mode |
Olis Cary-14 spectrophotometer | Olis | Spectrophotometer |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved