A subscription to JoVE is required to view this content. Sign in or start your free trial.
Endothelial colony forming cells (ECFCs) are circulating endothelial cells with robust clonal proliferative potential that display intrinsic in vivo vessel forming ability. Phenotypic and functional characterization of outgrowth endothelial cells derived from CB are important to identify and isolate bona fide ECFCs for potential clinical application in repairing damaged tissues.
Longstanding views of new blood vessel formation via angiogenesis, vasculogenesis, and arteriogenesis have been recently reviewed1. The presence of circulating endothelial progenitor cells (EPCs) were first identified in adult human peripheral blood by Asahara et al. in 1997 2 bringing an infusion of new hypotheses and strategies for vascular regeneration and repair. EPCs are rare but normal components of circulating blood that home to sites of blood vessel formation or vascular remodeling, and facilitate either postnatal vasculogenesis, angiogenesis, or arteriogenesis largely via paracrine stimulation of existing vessel wall derived cells3. No specific marker to identify an EPC has been identified, and at present the state of the field is to understand that numerous cell types including proangiogenic hematopoietic stem and progenitor cells, circulating angiogenic cells, Tie2+ monocytes, myeloid progenitor cells, tumor associated macrophages, and M2 activated macrophages participate in stimulating the angiogenic process in a variety of preclinical animal model systems and in human subjects in numerous disease states4, 5. Endothelial colony forming cells (ECFCs) are rare circulating viable endothelial cells characterized by robust clonal proliferative potential, secondary and tertiary colony forming ability upon replating, and ability to form intrinsic in vivo vessels upon transplantation into immunodeficient mice6-8. While ECFCs have been successfully isolated from the peripheral blood of healthy adult subjects, umbilical cord blood (CB) of healthy newborn infants, and vessel wall of numerous human arterial and venous vessels 6-9, CB possesses the highest frequency of ECFCs7 that display the most robust clonal proliferative potential and form durable and functional blood vessels in vivo8, 10-13. While the derivation of ECFC from adult peripheral blood has been presented14, 15, here we describe the methodologies for the derivation, cloning, expansion, and in vitro as well as in vivo characterization of ECFCs from the human umbilical CB.
Reagents and Solutions
EMG-2 media (Lonza, Cat. No. cc-3162 containing EBM-2 basal medium and EGM-2 SingleQuot kit Supplements, & growth factors)
EBM-2 (Lonza, Cat. No. cc-3156) supplemented with the entire SingleQuot kit supplements & growth factors (Lonza, Cat. No. cc-4176), 10% (v/v) fetal bovine serum (FBS) and 1% (v/v) penicillin (10,000 U/ml)/streptomycin (10,000 μg/ml)/amphotericin (25 μg/ml). Store up to 1 month at 4 °C. Recommended EGM-2 volumes to use for ECFC culture are 500 μl/well for 24-well plates, 2 ml/well for 6-well plates, 5ml/25-cm2 flasks, and 10 ml/75-cm2 flasks, unless otherwise specified in the protocol.
Collagen I solution
Dilute 0.575 ml of glacial acetic acid (17.4N) in 495 ml of sterile distilled water (0.02 N final concentration). Sterile filter the dilute acetic acid with a 0.22-μm vacuum filtration system. Add 25 mg rat tail collagen I to the dilute acetic acid to a final concentration of 50 μg/ml. The amount of collagen added will vary depending on the collagen stock concentration. Store up to a month at 4 °C.
Preparation of collagen I-coated tissue culture surfaces
Place 1 ml of collagen I solution in each well of a 6-well tissue culture plate (use 300 μl/well for 24-well plates, 3ml/25-cm2 flasks, and 8 ml/75-cm2 flasks). Incubate 1 hour to overnight at 37 °C. Remove the collagen I solution and wash surface two times, each time with PBS (use 500 μl/well for 24-well plates, 2 ml/well for 6-well plates, 5ml/25-cm2 flasks, and 10 ml/75-cm2 flasks). Use plates immediately for cell cultures.
FACS staining buffer
Phosphate-buffered saline (PBS) supplemented with 2% (v/v) fetal bovine serum (FBS). Store up to 2 weeks at 4 °C.
A. ECFC Outgrowth, Cloning and Expansion
B. In vitro Phenotypic Characterization of ECFCs: Endothelial Cell Surface Antigen Expression and Single Cell Assay for Clonal Proliferative Potential
C. In vivo Functional Characterization of ECFCs: In vivo Vessel Formation Assay to Examine the ECFC's Potential for Vasculogenesis
D. Representative Results
Using this ECFC derivation technique we have observed out-growth of primary colony formation as early as day 5 (Fig. 1). The out-growth ECFC colonies exhibited typical cobblestone appearance and gave rise to >40 population doublings upon long term expansion after colony pickup by cloning. Expanded colonies expressed endothelial antigens, but did not express hematopoietic antigens (Fig. 2). Importantly, they displayed a complete hierarchy of clonal proliferative potential at a single cell level (Fig. 3). Moreover, ECFCs formed humanized blood vessels that are perfused with host RBCs when implanted into immunodeficient mice4, 6, 8, 11 (Fig. 4).
Figure 1. Isolation of mononuclear cells (MNCs) from cord blood and outgrowth of endothelial colony forming cells (ECFCs) from cultured MNCs. MNCs form buffy coat layer during Ficoll-Pague density gradient separation of cord blood cells. Isolation of buffy coat layer to culture MNCs on rat-tail collagen I coated plates results in outgrowth of ECFC colony in 5 to 14 days. The outgrowth ECFC colony (indicated by arrow heads) displayed cobblestone morphology7.
Figure 2. Representative in vitro phenotypic assessment of endothelial and hematopoietic cell surface antigen expression. Immunophenotyping of cord blood-derived ECFCs revealed that ECFCs expressed endothelial antigens CD31, CD34, CD144, CD146, Flt-1, Flk-1, Flt-4, and Nrp2 but did not express hematopoietic antigens CD45, CD14, CD11b, cKit, CXCR4 or AC1337, 8.
Figure 3. Representative in vitro quantitation of the clonogenic and proliferative potential of CB derived ECFCs. (A) cord blood-derived ECFCs display clonal proliferative potential with a hierarchy of colonies ranging from clusters of 2-50 cells up to colonies of >2001. (B) Micrographs of hierarchy of colonies (colonies stained with, Sytox, a green fluorescent nuclear dye to take better quality pictures) obtained after cord blood-derived ECFCs were cultured at a single cell level for 14 days. Scale bar represents 100μm7, 8.
Figure 4. Representative in vivo functional characterization of cord blood-derived ECFCs. A) H&E staining of cord blood-derived ECFC containing cellularized gel implants indicated microvessel (filled with host RBCs) formation in collagen-fibronectin gel after 14 days of implantation. B) Anti-human CD31 staining (brown staining) further confirms the human origin of these vessels.
Phenotypic and functional characterization of putative endothelial progenitor cells is important to identify the bona fide ECFCs that are capable of clonally and serially re-plating in culture and give rise to durable and functional implantable blood vessels in vivo. Human umbilical cord blood is enriched with ECFCs and the concentration of these circulating cells declines with aging or disease10. Recent studies suggest that ECFC may play important roles in vascular repair or regeneration in ...
No conflicts of interest declared.
Dr. Yoder is consultant to EndGenitor Technologies, Inc. and a member of the board of Rimedion Technologies, Inc.
Name | Company | Catalog Number | Comments |
Name of the reagent | Company | Catalogue number | |
Heparin Sodium Injection, USP | APP Pharmaceuticals | 504031 | |
Ficoll-Pague | Amersham Biosciences | 17-1440-03 | |
Mixing cannula | Maersk Medical | 500.11.012 | |
EGM-2 | Lonza | CC-3162 | |
Defined FBS | Hyclone | SH30070.03 | |
TrypLE express | Gibco | 12605 | |
Rat type I collagen | BD Biosciences | 354236 | |
Matrigel | BD Biosciences | 356234 | |
FcR Block | Miltenyi Biotech | 130-059-901 | |
hCD31, FITC conjugated | BD Pharmingen | 555445 | |
hCD45, FITC conjugated | BD Pharmingen | 555482 | |
hCD14, FITC conjugated | BD Pharmingen | 555397 | |
hCD144, PE conjugated | eBioscience | 12-1449-80 | |
hCD146, PE conjugated | BD Pharmingen | 550315 | |
hCD105, PE conjugated | Invitrogen | MHCD10504 | |
Ms IgG1,k antibody, FITC conjugated | BD Pharmingen | 555748 | |
Ms IgG1,k antibody, PE conjugated | BD Pharmingen | 559320 | |
Ms IgG2a,k antibody, FITC conjugated | BD Pharmingen | 555573 | |
Anti-human CD31 | Dako | clone JC70/A | |
Anti-mouse CD31 | BD Pharmingen | 553370 | |
0.22-μm vacuum filtration system | Millipore | SCGPU05RE | |
Glacial acetic acid, 17.4N | Fisher | A38-500 | |
Antibiotic-Antimycotic | Invitrogen | 15240-062 | |
Fetal bovine serum (FBS) | Hyclone | SH30070.03 | |
IHC Zinc Fixative | BD Biosciences | 550523 | |
Sytox green reagent | Invitrogen | S33025 | |
Cloning cylinders, sterile | Fisher Scientific | 07-907-10 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved