JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

Whole Cell Patch Clamp for Investigating the Mechanisms of Infrared Neural Stimulation

Published: July 31st, 2013

DOI:

10.3791/50444

1Biotactical Engineering, Faculty of Engineering and Industrial Science, Swinburne University of Technology, 2Department of Otolaryngology, The University of Melbourne

Infrared nerve stimulation has been proposed as an alternative to electrical stimulation in a range of nerve types, including those associated with the auditory system. This protocol describes a patch clamp method for studying the mechanism of infrared nerve stimulation in a culture of primary auditory neurons.

It has been demonstrated in recent years that pulsed, infrared laser light can be used to elicit electrical responses in neural tissue, independent of any further modification of the target tissue. Infrared neural stimulation has been reported in a variety of peripheral and sensory neural tissue in vivo, with particular interest shown in stimulation of neurons in the auditory nerve. However, while INS has been shown to work in these settings, the mechanism (or mechanisms) by which infrared light causes neural excitation is currently not well understood. The protocol presented here describes a whole cell patch clamp method designed to facilitate the investigation of infrared neural stimulation in cultured primary auditory neurons. By thoroughly characterizing the response of these cells to infrared laser illumination in vitro under controlled conditions, it may be possible to gain an improved understanding of the fundamental physical and biochemical processes underlying infrared neural stimulation.

The fields of neurophysiology and medical bionics rely heavily on techniques that allow controllable stimulation of electrical responses in neural tissue. While electrical stimulation remains the gold standard in neural excitation, it suffers from a number of drawbacks such as the presence of stimulation artifacts when recording neural responses, and a lack of stimulation specificity due to the spread of current into surrounding tissue 1.

The last two decades have seen the development of optically mediated stimulation techniques 2. Several of these techniques require modification of the target tissue, either via the ad....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Culture of Spiral Ganglion Neurons

  1. Sterilize small round (e.g. 10 mm diameter) glass coverslips and curved forceps in an autoclave. Transfer the sterilized coverslips into individual wells of a sterile 4-ring 35 mm petri dish or 4-well plate, using the sterilized forceps. Apply 150 μl of poly-L-ornithine (500 μg/ml) and mouse laminin (0.01 mg/ml) to the top surface of the coverslip and place in an incubator (37 °C) for up to 48 hr. Ensure that the coverslips do not float away from the bo.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Spiral ganglion neurons respond to laser illumination with repeatable waveforms in both voltage-clamp and current-clamp recording configurations. Figure 3a shows typical changes in current flow across a cell membrane in response to a 2.5 msec, 0.8 mJ laser pulse (average response from 6 laser pulses, repeated at 1 sec intervals) with the membrane potential held at -70 mV, -60 mV and -50 mV. Net inward currents are consistently evoked in response to laser pulses, returning to initial values after illumina.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Using the protocols outlined in this paper it is possible to extract and culture spiral ganglion neurons and to investigate laser-evoked electrical activity by performing whole cell patch clamp experiments. When used in vitro, the patch clamp technique provides a level of control over experimental parameters that is not achievable in vivo. Laser stimulation parameters such as wavelength, pulse energy, pulse length, pulse shape, and pulse repetition sequences can be studied in a reproducible setting. In .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by the Australian Research Council under Linkage Project grant LP120100264.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Name of Reagent/Material Company Catalog Number Comments
Cell culture materials and equipment
Glass coverslips Lomb Scientific CSC 10 1 GP
4-ring cell culture dish VWR International 82050-542
Poly-L-ornithine solution Sigma-Aldrich P4957
Laminin Invitrogen 23017-015
Curved forceps WPI 14101 Dumont #5 tweezers (45° angle tip)
CO2 Incubator ThermoScientific Heracell 150i
Table 1. Cell culture materials and equipment.
Neurobasal media
Neurobasal A Gibco 10888-022
N-2 supplement Invitrogen 17502-048
B27 serum-free supplement Invitrogen 17504-044
Penicillin-Streptomycin Invitrogen 15140-148
L-Glutamine Invitrogen 25030-149
Intracellular solution
Potassium chloride Sigma-Aldrich P4504
HEPES Sigma-Aldrich H4034
Potassium D-gluconate Sigma-Aldrich G4500
EGTA Sigma-Aldrich E3889
Na2ATP Sigma-Aldrich A2383
MgATP Sigma-Aldrich A9187
NaGTP Sigma-Aldrich G8877
Potassium hydroxide LabServ BSPPL738.500
Sucrose Sigma-Aldrich S8501
Extracellular solution
Sodium chloride Sigma-Aldrich 310166
Potassium chloride Sigma-Aldrich P4504
HEPES Sigma-Aldrich H4034
Calcium chloride Sigma-Aldrich 383147
Magnesium chloride Sigma-Aldrich M8266
D-Glucose Sigma-Aldrich G8270
Sodium hydroxide LabServ BSPSL740.500
Sucrose Sigma-Aldrich S8501
Table 2. Solutions for cell culture and patch clamp. a) Neurobasal media. b) Intracellular solution. c) Extracellular solution.
Upright microscope Zeiss AxioExaminerD1 Equipped with Dodt contrast
Water-immersion objective Zeiss W Plan-APOCHROMAT 40x/0.75
Platform and X-Y stage ThorLabs Burleigh Gibraltar
Recording chamber Warner Instruments RC-26G
Vibration isolation table TMC Micro-g 63-532
CCD Camera Diagnostic Instruments RT1200
Camera software Diagnostic Instruments SPOT Basic
In-line solution heater Warner SH-27B
Temperature controller Warner TC-324B
Patch clamp amplifier Molecular Devices Multiclamp 700B
Patch clamp data acquisition system Molecular Devices Digidata 1440A
Micromanipulator Sutter Instruments MPC-325
Micropipette glass Sutter Instruments GBF100-58-15 Borosilicate glass with filament
Micropipette Puller Sutter Instruments P2000
Recording Software AxoGraph Lab pack and electrophysiology tools
Aspirator bottle Sigma-Aldrich CLS12201L 1 L Pyrex aspirator bottle, with outlet for tubing
PE Tubing Harvard PolyE #340
Masterflex peristaltic pump Cole-Parmer HV-07554-85
Table 3.Patch clamp equipment.
1,870 nm laser diode Optotech
200/220 μm diameter multimode optical fiber patch cord (FC/PC) AFW Technologies MM1-FC2-200/220-5-C-0.22 Light delivery optical fiber, silica core and cladding, 0.22 NA
Optical fiber through connector (FC/PC) Thorlabs ADAFC2
Optical fiber cleaver EREM FO1
Optical fiber stripping tool (0.25 - 0.6 mm) Siemens For removing optical fiber jacket
Optical fiber stripping tool (0.6 - 1.0 mm) Siemens For removing outer coating of patch cord
Signal generator Any signal generator that can output the necessary pulse shapes and is capable of being externally triggered
Optical fiber positioner Custom made positioner. Could substitute with standard micropositioner used for patch clamp experiments
Optical fiber chuck Newport FPH-DJ
Laser power meter and detector head Coherent FieldMate (power meter) with LM-3 (detector head)
Table 4. Laser equipment.

  1. Wells, J., Kao, C., Jansen, E. D., Konrad, P., Mahadevan-Jansen, A. Application of infrared light for in vivo neural stimulation. Journal of Biomedical Optics. 10, 064003 (2005).
  2. Richter, C. P., Matic, A. I., Wells, J. D., Jansen, E. D., Walsh, J. T. Neural stimulation with optical radiation. Laser & Photonics Reviews. 5, 68-80 (2011).
  3. Kramer, R. H., Fortin, D. L., Trauner, D. New photochemical tools for controlling neuronal activity. Current Opinion in Neurobiology. 19, 544-552 (2009).
  4. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K. Millisecond-timescale genetically targeted optical control of neural activity. Nature Neuroscience. 8, 1263-1268 (2005).
  5. Albert, E. S., et al. Trpv4 channels mediate the infrared laser-evoked response in sensory neurons. Journal of Neurophysiology. 107, 3227-3234 (2012).
  6. Wells, J., et al. Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophysical Journal. 93, 2567-2580 (2007).
  7. Shapiro, M. G., Homma, K., Villarreal, S., Richter, C. -. P., Bezanilla, F. Infrared light excites cells by changing their electrical capacitance. Nature Communications. 3, 736 (2012).
  8. Bec, J. -. M., et al. Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons. Lasers in Surgery and Medicine. 44, 736-745 (2012).
  9. Dittami, G. M., Rajguru, S. M., Lasher, R. A., Hitchcock, R. W., Rabbitt, R. D. Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes. Journal of Physiology (London). 589, 1295-1306 (2011).
  10. Izzo, A. D., et al. Laser stimulation of auditory neurons: Effect of shorter pulse duration and penetration depth. Biophysical Journal. 94, 3159-3166 (2008).
  11. Wells, J., Konrad, P., Kao, C., Jansen, E. D., Mahadevan-Jansen, A. Pulsed laser versus electrical energy for peripheral nerve stimulation. Journal of Neuroscience Methods. 163, 326-337 (2007).
  12. Teudt, I. U., Nevel, A. E., Izzo, A. D., Walsh, J. T., Richter, C. P. Optical stimulation of the facial nerve: A new monitoring technique. Laryngoscope. 117, 1641-1647 (2007).
  13. Jenkins, M. W., et al. Optical pacing of the embryonic heart. Nature Photonics. 4, 623-626 (2010).
  14. Izzo, A. D., Richter, C. P., Jansen, E. D., Walsh, J. T. Laser stimulation of the auditory nerve. Lasers in Surgery and Medicine. 38, 745-753 (2006).
  15. Izzo, A. D., et al. Selectivity of neural stimulation in the auditory system: A comparison of optic and electric stimuli. J. Biomed. Opt. 12, 021008 (2007).
  16. Richter, C. P., et al. Optical stimulation of auditory neurons: Effects of acute and chronic deafening. Hearing Research. 242, 42-51 (2008).
  17. Littlefield, P. D., Vujanovic, I., Mundi, J., Matic, A. I., Richter, C. P. Laser stimulation of single auditory nerve fibers. Laryngoscope. 120, 2071-2082 (2010).
  18. Izzo, A. D., et al. Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength. IEEE Transactions on Biomedical Engineering. 54, 1108-1114 (2007).
  19. Sakmann, B., Neher, E. Patch clamp techniques for studying ionic channels in excitable-membranes. Annual Review of Physiology. 46, 455-472 (1984).
  20. Needham, K., Nayagam, B. A., Minter, R. L., O'Leary, S. J. Combined application of brain-derived neurotrophic factor and neurotrophin-3 and its impact on spiral ganglion neuron firing properties and hyperpolarization-activated currents. Hearing Research. 291, 1-14 (2012).
  21. Coleman, B., Fallon, J. B., Pettingill, L. N., de Silva, M. G., Shepherd, R. K. Auditory hair cell explant co-cultures promote the differentiation of stem cells into bipolar neurons. Experimental Cell Research. 313, 232-243 (2007).
  22. Whitlon, D. S., et al. Survival and morphology of auditory neurons in dissociated cultures of newborn mouse spiral ganglion. Neuroscience. 138, 653-662 (1016).
  23. Vieira, M., Christensen, B. L., Wheeler, B. C., Feng, A. S., Kollmar, R. Survival and stimulation of neurite outgrowth in a serum-free culture of spiral ganglion neurons from adult mice. Hearing Research. 230, 17-23 (2007).
  24. Parker, M., Brugeaud, A., Edge, A. S. B. Primary culture and plasmid electroporation of the murine organ of corti. J. Vis. Exp. (36), e1685 (2010).
  25. Thompson, A. C., Wade, S. A., Brown, W. G. A., Stoddart, P. R. Modeling of light absorption in tissue during infrared neural stimulation. Journal of Biomedical Optics. 17, 075002 (2012).
  26. Snyder, A. W., Love, J. D. . Optical Waveguide Theory. , (1983).
  27. Thompson, A. C., Wade, S. A., Cadusch, P. J., Brown, W. G. A., Stoddart, P. R. Modelling of the temporal effects of heating during infrared neural stimulation. J. Biomed. Opt. 18, 035004-0310 (2013).
  28. Yao, J., Liu, B. Y., Qin, F. Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies. Biophysical Journal. 96, 3611-3619 (2009).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved