A subscription to JoVE is required to view this content. Sign in or start your free trial.
Infrared nerve stimulation has been proposed as an alternative to electrical stimulation in a range of nerve types, including those associated with the auditory system. This protocol describes a patch clamp method for studying the mechanism of infrared nerve stimulation in a culture of primary auditory neurons.
It has been demonstrated in recent years that pulsed, infrared laser light can be used to elicit electrical responses in neural tissue, independent of any further modification of the target tissue. Infrared neural stimulation has been reported in a variety of peripheral and sensory neural tissue in vivo, with particular interest shown in stimulation of neurons in the auditory nerve. However, while INS has been shown to work in these settings, the mechanism (or mechanisms) by which infrared light causes neural excitation is currently not well understood. The protocol presented here describes a whole cell patch clamp method designed to facilitate the investigation of infrared neural stimulation in cultured primary auditory neurons. By thoroughly characterizing the response of these cells to infrared laser illumination in vitro under controlled conditions, it may be possible to gain an improved understanding of the fundamental physical and biochemical processes underlying infrared neural stimulation.
The fields of neurophysiology and medical bionics rely heavily on techniques that allow controllable stimulation of electrical responses in neural tissue. While electrical stimulation remains the gold standard in neural excitation, it suffers from a number of drawbacks such as the presence of stimulation artifacts when recording neural responses, and a lack of stimulation specificity due to the spread of current into surrounding tissue 1.
The last two decades have seen the development of optically mediated stimulation techniques 2. Several of these techniques require modification of the target tissue, either via the addition of a particular molecule (e.g. caged molecules) 3 or some form of genetic manipulation (e.g. optogenetics) 4, neither of which are easy to apply outside of a research setting. Of particular interest therefore is infrared neural stimulation (INS), whereby neural tissue is excited by pulsed infrared laser light. INS has the potential to overcome many of the shortcomings of electrical stimulation by enabling highly specific, non-contact stimulation of neural tissue 2. However, while INS has been successfully demonstrated in a variety of settings in vivo, the precise mechanism of excitation remains uncertain.
Some recent publications have shown progress towards uncovering the mechanism behind INS 5-7. Rapid heating due to absorption of the laser light by water appears to play a key role. However, beyond this a consensus is yet to be reached. Shapiro et al. 7 propose a highly general mechanism whereby rapid heating causes a perturbation in the distribution of charged particles adjacent to the cell membrane, leading to a change in the capacitance of the cell membrane and subsequent depolarization. In addition, Albert et al. 5 assert that laser induced heating activates a specific class of temperature sensitive ion channels (transient receptor potential vanilloid channels), allowing ions to pass through the cell membrane. At this stage it is unclear how these mechanisms combine, or indeed whether there are further factors that are yet to be identified.
Although a small number of publications (references 5,7-9) have investigated INS in vitro, the vast majority of work published in this field has been carried out in vivo (e.g. references 1,6,10-18). Infrared stimulation of auditory neurons has been an area of particular interest, owing to the potential applications in cochlear implants 10,14-18. While in vivo experiments are important to verify the effectiveness of the technique in various settings, the increased level of control afforded by in vitro studies is expected to lead to a more detailed understanding of the mechanism responsible for INS. This report describes the preparation of cultured spiral ganglion neurons for patch clamp investigations, as these can be used to study fundamental mechanisms while also linking to the large body of existing data from the auditory system.
The patch clamp technique is an excellent tool for investigations of electrophysiological phenomena, providing a means of recording electrical activity in single cells and studying the contribution of the individual underlying currents19. When this technique is applied to a stable in vitro preparation of primary neurons, such as cultured spiral ganglion neurons, it offers the opportunity to study in depth the mechanisms by which neural activity is controlled and manipulated.
The protocols specified in this work outline methods for investigating the effect of laser stimulation on the electrical properties of spiral ganglion neurons through patch clamp recordings. The approach is based on a fiber-coupled laser rather than a free-space laser, allowing safer operation as well as easier and more repeatable alignment without the need to modify the standard microscope configuration. On the basis of these protocols, it should be possible to conduct a wide range of experiments in order to more clearly determine the mechanism or mechanisms behind INS.
1. Culture of Spiral Ganglion Neurons
2. Preparation for Patch Clamp Recordings
3. Patch Clamp Recordings for Investigation of INS
4. INS Experiments
Laser pulses with lengths ranging from around 500 μsec to 15 msec and energies of ~0.25-5 mJ per pulse typically yield measurable electrical responses. Setting the repetition rate of laser pulses to be 1 Hz or less may be useful for initial experiments, since it will minimize the effects of this parameter. Typical results showing the change in the recorded signal are presented in the following Section.
Spiral ganglion neurons respond to laser illumination with repeatable waveforms in both voltage-clamp and current-clamp recording configurations. Figure 3a shows typical changes in current flow across a cell membrane in response to a 2.5 msec, 0.8 mJ laser pulse (average response from 6 laser pulses, repeated at 1 sec intervals) with the membrane potential held at -70 mV, -60 mV and -50 mV. Net inward currents are consistently evoked in response to laser pulses, returning to initial values after illumina...
Using the protocols outlined in this paper it is possible to extract and culture spiral ganglion neurons and to investigate laser-evoked electrical activity by performing whole cell patch clamp experiments. When used in vitro, the patch clamp technique provides a level of control over experimental parameters that is not achievable in vivo. Laser stimulation parameters such as wavelength, pulse energy, pulse length, pulse shape, and pulse repetition sequences can be studied in a reproducible setting. In ...
The authors have nothing to disclose.
This work was supported by the Australian Research Council under Linkage Project grant LP120100264.
Name | Company | Catalog Number | Comments |
Name of Reagent/Material | Company | Catalog Number | Comments |
Cell culture materials and equipment | |||
Glass coverslips | Lomb Scientific | CSC 10 1 GP | |
4-ring cell culture dish | VWR International | 82050-542 | |
Poly-L-ornithine solution | Sigma-Aldrich | P4957 | |
Laminin | Invitrogen | 23017-015 | |
Curved forceps | WPI | 14101 | Dumont #5 tweezers (45° angle tip) |
CO2 Incubator | ThermoScientific | Heracell 150i | |
Table 1. Cell culture materials and equipment. | |||
Neurobasal media | |||
Neurobasal A | Gibco | 10888-022 | |
N-2 supplement | Invitrogen | 17502-048 | |
B27 serum-free supplement | Invitrogen | 17504-044 | |
Penicillin-Streptomycin | Invitrogen | 15140-148 | |
L-Glutamine | Invitrogen | 25030-149 | |
Intracellular solution | |||
Potassium chloride | Sigma-Aldrich | P4504 | |
HEPES | Sigma-Aldrich | H4034 | |
Potassium D-gluconate | Sigma-Aldrich | G4500 | |
EGTA | Sigma-Aldrich | E3889 | |
Na2ATP | Sigma-Aldrich | A2383 | |
MgATP | Sigma-Aldrich | A9187 | |
NaGTP | Sigma-Aldrich | G8877 | |
Potassium hydroxide | LabServ | BSPPL738.500 | |
Sucrose | Sigma-Aldrich | S8501 | |
Extracellular solution | |||
Sodium chloride | Sigma-Aldrich | 310166 | |
Potassium chloride | Sigma-Aldrich | P4504 | |
HEPES | Sigma-Aldrich | H4034 | |
Calcium chloride | Sigma-Aldrich | 383147 | |
Magnesium chloride | Sigma-Aldrich | M8266 | |
D-Glucose | Sigma-Aldrich | G8270 | |
Sodium hydroxide | LabServ | BSPSL740.500 | |
Sucrose | Sigma-Aldrich | S8501 | |
Table 2. Solutions for cell culture and patch clamp. a) Neurobasal media. b) Intracellular solution. c) Extracellular solution. | |||
Upright microscope | Zeiss | AxioExaminerD1 | Equipped with Dodt contrast |
Water-immersion objective | Zeiss | W Plan-APOCHROMAT 40x/0.75 | |
Platform and X-Y stage | ThorLabs | Burleigh Gibraltar | |
Recording chamber | Warner Instruments | RC-26G | |
Vibration isolation table | TMC | Micro-g 63-532 | |
CCD Camera | Diagnostic Instruments | RT1200 | |
Camera software | Diagnostic Instruments | SPOT Basic | |
In-line solution heater | Warner | SH-27B | |
Temperature controller | Warner | TC-324B | |
Patch clamp amplifier | Molecular Devices | Multiclamp 700B | |
Patch clamp data acquisition system | Molecular Devices | Digidata 1440A | |
Micromanipulator | Sutter Instruments | MPC-325 | |
Micropipette glass | Sutter Instruments | GBF100-58-15 | Borosilicate glass with filament |
Micropipette Puller | Sutter Instruments | P2000 | |
Recording Software | AxoGraph | Lab pack and electrophysiology tools | |
Aspirator bottle | Sigma-Aldrich | CLS12201L | 1 L Pyrex aspirator bottle, with outlet for tubing |
PE Tubing | Harvard | PolyE #340 | |
Masterflex peristaltic pump | Cole-Parmer | HV-07554-85 | |
Table 3.Patch clamp equipment. | |||
1,870 nm laser diode | Optotech | ||
200/220 μm diameter multimode optical fiber patch cord (FC/PC) | AFW Technologies | MM1-FC2-200/220-5-C-0.22 | Light delivery optical fiber, silica core and cladding, 0.22 NA |
Optical fiber through connector (FC/PC) | Thorlabs | ADAFC2 | |
Optical fiber cleaver | EREM | FO1 | |
Optical fiber stripping tool (0.25 - 0.6 mm) | Siemens | For removing optical fiber jacket | |
Optical fiber stripping tool (0.6 - 1.0 mm) | Siemens | For removing outer coating of patch cord | |
Signal generator | Any signal generator that can output the necessary pulse shapes and is capable of being externally triggered | ||
Optical fiber positioner | Custom made positioner. Could substitute with standard micropositioner used for patch clamp experiments | ||
Optical fiber chuck | Newport | FPH-DJ | |
Laser power meter and detector head | Coherent | FieldMate (power meter) with LM-3 (detector head) | |
Table 4. Laser equipment. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved