A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This model system starts from a myofibroblast-populated fibrin gel that can be used to study endogenous collagen (re)organization real-time in a nondestructive manner. The model system is very tunable, as it can be used with different cell sources, medium additives, and can be adapted easily to specific needs.
Collagen content and organization in developing collagenous tissues can be influenced by local tissue strains and tissue constraint. Tissue engineers aim to use these principles to create tissues with predefined collagen architectures. A full understanding of the exact underlying processes of collagen remodeling to control the final tissue architecture, however, is lacking. In particular, little is known about the (re)orientation of collagen fibers in response to changes in tissue mechanical loading conditions. We developed an in vitro model system, consisting of biaxially-constrained myofibroblast-seeded fibrin constructs, to further elucidate collagen (re)orientation in response to i) reverting biaxial to uniaxial static loading conditions and ii) cyclic uniaxial loading of the biaxially-constrained constructs before and after a change in loading direction, with use of the Flexcell FX4000T loading device. Time-lapse confocal imaging is used to visualize collagen (re)orientation in a nondestructive manner.
Cell and collagen organization in the constructs can be visualized in real-time, and an internal reference system allows us to relocate cells and collagen structures for time-lapse analysis. Various aspects of the model system can be adjusted, like cell source or use of healthy and diseased cells. Additives can be used to further elucidate mechanisms underlying collagen remodeling, by for example adding MMPs or blocking integrins. Shape and size of the construct can be easily adapted to specific needs, resulting in a highly tunable model system to study cell and collagen (re)organization.
Cardiovascular tissues have a prominent load-bearing function. In particular content and organization of collagen fibers in the extracellular matrix contribute to the load-bearing properties and dominate overall tissue strength1. In tissue engineering mechanical conditioning of the construct is used - typically consisting of (cyclic) straining regimens - to enhance tissue organization and mechanical properties2,3. Full understanding of strain-induced collagen organization in complex tissue geometries to create tissues with predefined collagen architecture has not yet been achieved. This is mainly due to our limited knowledge of collagen remodeling in developing tissues. Existing models mainly give information about the final net outcome of collagen remodeling with use of static strain4-6. Here we provide a highly tunable model system that allows the study of collagen (re)organization in a real-time fashion, in 3D, under influence of static or cyclic strain. The tissue constructs are fibrin-based, ensuring that all collagen in the construct is endogenous. Cell and collagen organization in the constructs is visualized, and an internal reference system allows us to relocate cells and collagen structures for time-lapse analysis. In this protocol we will describe the use of the model system for Human Vena Saphena Cells (HVSCs), since these cells are known for their enhanced extra cellular matrix production and ability to remodel the matrix and our established use in engineered cardiovascular tissues7, based on the work of de Jonge et al.8
1. Culture of Human Vena Saphena Cells
Note: Freezing of the cells is not necessary when harvesting HVSCs, but is solely used for storage.
2. Engineering of Fibrin-based Tissue Constructs
Notes: Only use the soft side of the Velcro and face this side upwards. When gluing the Velcro, only cover the Velcro with silicone glue, do not spread glue throughout the well. Since the culture plates have silicone membrane bottoms, use something underneath the well plate for reinforcing the flexible membranes, to ensure easy gluing in to the plate.
Note: To dissolve fibrinogen mix gently to prevent too much foam formation.
Note: Storage on ice is needed to prevent early gelation of thrombin and fibrinogen.
Note: The fluorescent polystyrene microspheres are used as internal reference markers for image analysis. When mixing thrombin and fibrinogen, prevent the formation of air bubbles by carefully pipetting the mixture. Air bubbles will result in holes in the fibrin gel.
Notes: Do this as quickly as possible to prevent gelation before the mixture is pipetted in the well plate. Practice before using cells and beads.
3. Applying Strain and Inducing Changes in Strain and Constraints
4. Visualizing Cells and Collagen
This model system allows for culturing myofibroblast-seeded fibrin gels. Figure 1A shows a tissue cultured first under static biaxial constraints. Tissue constraints are released by cutting the fibrin gel from two constraints, to create uniaxial static constraints, and tissue compacts and remodels afterwards (Figure 1A). For cyclic strain, the tissue is cultured under static biaxial constraints as well. After 5 days cyclic uniaxial strain can be applied (Figure 1B). To i...
The described model system of cell-populated fibrin constructs has great potential for the study of cell and collagen (re)organization (de Jonge et al.15), e.g. to be used for tissue engineering purposes. By using fibrin as the initial cell carrier, after fibrin degradation, a tissue is created with cells and endogenous matrix only. In this way, cells are stimulated to react to strain, either static or cyclic in nature, by applying contractile forces16,17, sensing boundary stiffnes...
The authors declare that they have no competing financial interests.
This study was performed in the research program of the BioMedical Materials (BMM) institute. BMM is cofunded by the Dutch Ministry of Economic affairs, Agriculture and Innovation. The financial contribution of the Nederlandse Hartstichting is gratefully acknowledged.
Name | Company | Catalog Number | Comments |
Culture plastic | Greiner | Includes culture flasks and pipettes | |
Advanced DMEM | Gibco | 12491 | |
Fetal bovine serum | Greiner | 758075 | |
Penicillin/streptomycin | Gibco | 10378016 | |
GlutaMax | Gibco | 35050-079 | |
Elastomer and curing agent | Dow Corning Corporation | 3097358-1004 | Silastic MDX 4-4210# |
Velcro | Regular store | You can buy this at a regular store, only use the soft side | |
Bioflex culture plates | Flexcell Int | BF-3001U | Untreated |
L-Ascorbic Acid 2-phosphatase | Sigma | A8960 | |
ε-Amino Caproic Acid | Sigma-Aldrich | D7754 | |
Bovine thrombin | Sigma | T4648 | |
Bovine fibrinogen | Sigma | F8630 | |
0.45 syringe filter | Whatmann (Schleicher and Scheul) | 10462100 | |
Polystyrene microspheres | Invitrogen | F-8829 | Blue fluorescent, 10 μm diameter |
Flexcell FX-4000T | Flexcell Int | Includes rectangular loading posts | |
Cell Tracker Orange | Invitrogen Molecular Probes | C2927 | |
CNA35-OG488 | Cordially provided by the Laboratory for Macromolecular and Organic Chemistry, Department of Biomedical Engineering, Eindhoven University of Technology | ||
Confocal laser scanning microscope | Carl Zeiss | LSM 510 Meta laser scanning microscope and Two-Photon-LSM mode | |
Amphotericin | Gibco | 15290-018 | Needed for cell isolation |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved