Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The cut-open Vaseline gap approach is used to obtain low noise recordings of ionic and gating currents from voltage-dependent ion channels expressed in Xenopus oocytes with high resolution of fast channel kinetics. With minor modification, voltage clamp fluorometry can be coupled to the cut-open oocyte protocol.

Abstract

The cut-open oocyte Vaseline gap (COVG) voltage clamp technique allows for analysis of electrophysiological and kinetic properties of heterologous ion channels in oocytes. Recordings from the cut-open setup are particularly useful for resolving low magnitude gating currents, rapid ionic current activation, and deactivation. The main benefits over the two-electrode voltage clamp (TEVC) technique include increased clamp speed, improved signal-to-noise ratio, and the ability to modulate the intracellular and extracellular milieu.

Here, we employ the human cardiac sodium channel (hNaV1.5), expressed in Xenopus oocytes, to demonstrate the cut-open setup and protocol as well as modifications that are required to add voltage clamp fluorometry capability.

The properties of fast activating ion channels, such as hNaV1.5, cannot be fully resolved near room temperature using TEVC, in which the entirety of the oocyte membrane is clamped, making voltage control difficult. However, in the cut-open technique, isolation of only a small portion of the cell membrane allows for the rapid clamping required to accurately record fast kinetics while preventing channel run-down associated with patch clamp techniques.

In conjunction with the COVG technique, ion channel kinetics and electrophysiological properties can be further assayed by using voltage clamp fluorometry, where protein motion is tracked via cysteine conjugation of extracellularly applied fluorophores, insertion of genetically encoded fluorescent proteins, or the incorporation of unnatural amino acids into the region of interest1. This additional data yields kinetic information about voltage-dependent conformational rearrangements of the protein via changes in the microenvironment surrounding the fluorescent molecule.

Introduction

Specialized voltage clamping techniques permit the recording of ionic currents at controlled membrane potentials. Widely used two-electrode voltage clamp (TEVC) and patch clamp techniques provide reliable electrophysiological information on the properties of many ion channels. However, both of these methods have drawbacks that prevent the acquisition of reliable data for fast voltage-gated sodium channels and other fast activating channels in membranes such as those of Xenopus oocytes. The Bezanilla and Stefani laboratories consequently developed the cut-open Vaseline gap voltage clamp technique (COVG) for oocytes2. The technique has been applied w....

Protocol

1. Initial Equipment Setup

  1. Place the stage and the microelectrode manipulator on a vibration-isolation system (e.g. an air table) with a surrounding Faraday cage to prevent electrical and mechanical noise.
  2. Solder six Ag/AgCl pellets to six-inch lengths of 24 AWG wire. For one of these lengths (to be connected to P1), splice in a second wire to form a "Y". On the ends of each wire solder a gold BNC pin, which is included with the amplifier.
  3. Connect the five Ag/AgCl pellets .......

Representative Results

Figure 4 displays the change in permeability of the oocyte as a saponin solution is applied to the bottom section of the oocyte. Figure 5 demonstrates the rate of intracellular solution exchange by diffusion following saponin permeabilization. 20-40 min are required to come to a steady-state2,18.

Figure 6A show traces generated from the recording protocol. The figure shows ionic currents (after P/-8 leak subtraction) in respons.......

Discussion

The cut-open oocyte Vaseline gap voltage clamp technique allows for rapid resolution of data, low noise, increased control over internal solution and external solution composition, and stable recordings over relatively long protocols19. These advantages set this technique apart from the standard two-electrode voltage clamp and patch clamp techniques. Although specialized equipment is required and the protocol is relatively difficult, very few issues occur once the system has been optimized. This allows for rep.......

Acknowledgements

All the members of the Washington University in St. Louis Cardiac Molecular Engineering Lab. A Burroughs Welcome Fund Career Award at the Scientific Interface - 1010299 (to J.S.).

....

Materials

NameCompanyCatalog NumberComments
External SolutionBrandCatalog Number[Final], weight, or volume
N-methyl-D-glucamine (NMDG)Sigma-AldrichM200425mM
MES Sodium SaltSigma-AldrichM505790mM
HEPESResearch Products InternationalH7503020mM
Calcium hydroxideSigma-Aldrich2392322mM
MES HydrateSigma-AldrichM8250variable (pH to 7.4)
Internal Solution
N-methyl-D-glucamine (NMDG)Sigma-AldrichM2004105mM
MES Sodium SaltSigma-AldrichM505710mM
HEPESResearch Products InternationalH7503020mM
Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA)Sigma-AldrichE43782mM
MES HydrateSigma-AldrichM8250variable (pH to 7.4)
Depolarizing Solution
KClSigma-Aldrich221473110mM
Magnesium chlorideSigma-AldrichM82661.5mM
Calcium ChlorideCaissonC0210.8mM
HEPESResearch Products InternationalH7503010mM
Pipet Solution
KClSigma-Aldrich2214733M
Saponin Solution
SaponinSigma-Aldrich470360.125g
Internal SolutionSee above50mL
Agar Bridge Solution
N-methyl-D-glucamine (NMDG)Sigma-AldrichM2004100ml of 1M
HEPESResearch Products InternationalH750301.2g
MES HydrateSigma-AldrichM8250variable (pH to 7.4)
Granulated AgarResearch Products InternationalA202503%
NMDG Storage Solution
NMDG, HEPES, MES Hydrate solutionsee above40ml
Water60ml
Name of Material/ EquipmentCompanyCatalog NumberComments/Description
High Performance Oocyte ClampDaganCA-1B
Data Acquisition SystemAxon CNS Digidata 1440A
OscilloscopeTektronix TDS 210
Rack Power FilterAPC G5
Heating/Cooling Bath Temperature ControllerDaganHCC-100A
PCDellOptiplex 990
pCLAMP 10.3 Voltage Clamp SoftwareMolecular Devices, LLCpCLAMP10.3
TMC Vibration Control TableTop PlatformTMC64 SERIES
TMC Vibration Control Air TableTMC20 Series 
V1/I Electrode Data CollectorDaganpart of CA-1B
MX10L MicromanipulatorSiskiyouMX10L
Bath/Guard (I/V) Headstage (with appropriate connectors)Daganpart of CA-1B
MicroscopeOmanoOM2300S-JW11
Temperature Control BathCustom or DaganCustom or HE-204CCustom chamber made from materials from Cool Polymers (D-series). Dagan also provides a prefeabricated stage (HE-204C).
Custom AgCl Pellet ContainerCustomCustomCustom machined
Ag/AgCl electrode, pellet, 2.0 mmWarnerE-206
External Oocyte BathCustom or DaganCustom or CC-1-T-LBCustom machined or purchased from Dagan
Internal Oocyte BathCustom or DaganCustom or CC-TG-NDCustom machined or purchased from Dagan
Capillaries for Agar Bridges and Pulled ElectrodesWarnerG150T-4
Rotatable Mounts for the Microscope, Micromanipulator, and BathSiskiyouSD-1280P
Fiber-LiteDolan-JennerLMI-600
Regular BleachClorox470174-764
Xenopus laevis OocytesNascoLM535M (sexually mature females)
90 Na+ External SolutionSee Solutions sheet
10 Na+ Internal SolutionSee Solutions sheet
3 M KCLSee Solutions sheet
SaponinSigma-Aldrich47036
NMDG Storage SolutionSee Solutions sheet
5mL transfer pipetsSciMartGS-52
Modified KCl electrode injectorBD309659Plastic syringe tip melted to allow for injection of solution into electrodes. Alternatively, a Microfil by WPI can be purchased.
MicrovaccumCustomCustom
ForcepsVWR63040-458
Oocyte Handling Tools (Pipette Pump)VWR53502-222
Deionized Water Squirt BottleVWR16649-911
Vaseline Petroleum JellyFisher Scientific19-086-291 
Additional Materials Required for VCF Recordings:
VCF MicroscopeNikonEclipse FN1
Nikon CFI APO 40XW NIR ObjectiveNikonN40X-NIR
X-Y Translator System for Fixed-Stage Upright MicroscopesSutter InstrumentsMT500-586
External VCF Oocyte BathCustomCustom machined. The chamber dimensions are 2.7 x 1.9 x 0.4 cm.
Internal VCF Oocyte BathCustomCustom machined. The chamber dimensions are 1.6 x 1.6 x 0.4 cm.
Modified Temperature Control BathCustomCustom chamber made from materials from Cool Polymers (D-series). The chamber dimensions of the modified temperature controller bath are 2.7 x 1.9 x 0.3 cm for the horizontal chamber, and 1 x 2.5 x 0.5 cm for the vertical chamber.

References

  1. Kalstrup, T., Blunck, R. Dynamics of internal pore opening in KV channels probed by a fluorescent unnatural amino acid. Proc. Natl. Acad. Sci. U.S.A. 110, 8272-8277 (2013).
  2. Stefani, E., Bezanilla, F. Cut-open oocyte vol....

Explore More Articles

Xenopus OocyteCut open Vaseline GapVoltage clampFluorometryElectrophysiologyIon ChannelsHNaV1 5Two electrode Voltage ClampFast KineticsVoltage Clamp Fluorometry

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved