JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Colloidal probe nanoscopy can be used within a variety of fields to gain insight into the physical stability and coagulation kinetics of colloidal systems and aid in drug discovery and formulation sciences using biological systems. The method described within provides a quantitative and qualitative means to study such systems.

Abstract

Colloidal Probe Nanoscopy (CPN), the study of the nano-scale interactive forces between a specifically prepared colloidal probe and any chosen substrate using the Atomic Force Microscope (AFM), can provide key insights into physical interactions present within colloidal systems. Colloidal systems are widely existent in several applications including, pharmaceuticals, foods, paints, paper, soil and minerals, detergents, printing and much more.1-3 Furthermore, colloids can exist in many states such as emulsions, foams and suspensions. Using colloidal probe nanoscopy one can obtain key information on the adhesive properties, binding energies and even gain insight into the physical stability and coagulation kinetics of the colloids present within. Additionally, colloidal probe nanoscopy can be used with biological cells to aid in drug discovery and formulation development. In this paper we describe a method for conducting colloidal probe nanoscopy, discuss key factors that are important to consider during the measurement, and show that both quantitative and qualitative data that can be obtained from such measurements.

Introduction

Atomic force microscopy (AFM) is a technique that enables qualitative and quantitative imaging and probing of a material surface.4-6 Traditionally, AFM is used for the evaluation of surface topography, morphology and structure of multi-phasic materials. AFM has the capability to quantitatively evaluate nano-scale interactions, such as charge, attraction, repulsion and adhesion forces between a specific probe and substrate in both air and liquid mediums.7,8 The AFM originally developed by Binning, Quate and Gerber9 uses a probe of known/determined sensitivity and spring constant to approach and/or scan a sample. Due to the physical interactions between the probe and the sample, the cantilever is deflected during contact or proximity and depending on the mode of operation, this deflection can be translated to acquire the topography of the sample or measure forces present between the probe and sample. Modifications to the AFM technique, such as colloidal probe nanoscopy,10 have allowed scientist to directly evaluate the nano-force interactions between two materials present in a colloidal system of interest.

In colloidal probe nanoscopy, a spherical particle of choice is attached to the apex of a cantilever, replacing the traditional conical and pyramidal tips. A spherical particle is ideal to allow comparison with theoretical models such as the Johnson, Kendal, Roberts (JKR)11 and Derjaguin, Landau, Vervwey, Overbeek (DLVO)12-14 theories and to minimize the influence of surface roughness on the measurement.15 These theories are used to define the contact mechanics and inter-particle forces expected within a colloidal system. The DLVO theory combines the attractive van der Waal forces and repulsive electrostatic forces (due to electrical double layers) to quantitatively explain the aggregation behavior of aqueous colloidal systems, while the JKR theory incorporates the effect of contact pressure and adhesion to model elastic contact between two components. Once an appropriate probe is produced, it is used to approach any other material/particle to evaluate the forces between the two components. Using a standard manufactured tip one will be able to measure interactive forces between that tip and a material of choice, but the benefit of using a custom made colloidal probe allows the measurement of forces present between materials present within the studied system. Measurable interactions include: adhesive, attractive, repulsive, charge, and even electrostatic forces present between the particles.16 Additionally, the colloidal probe technique can be used to explore tangential forces present between particles and material elasticity.17,18

The ability to conduct measurements in various media is one of the major advantages of colloidal probe nanoscopy. Ambient conditions, liquid media, or humidity-controlled conditions can all be used to mimic environmental conditions of the system studied. The ability to conduct measurements in a liquid environment enables the study of colloidal systems in an environment that it naturally occurs; thus, being able to quantitatively acquire data that is directly translatable to the system in its natural state. For example, particle interactions present within metered dose inhalers (MDI) can be studied using a model liquid propellant with similar properties to the propellant used in MDIs. The same interactions measured in air would not be representative of the system existent in the inhaler. Furthermore, the liquid medium can be modified to evaluate the effect of moisture ingress, a secondary surfactant, or temperature on the particle interactions in an MDI. The ability to control temperature can be used to mimic certain steps in the manufacturing of colloidal systems to evaluate how temperature either in the manufacturing of or storage of colloidal systems may have an impact on particle interactions.

Measurements that can be obtained using colloidal probes include; Topography scanning, individual force-distance curves, force-distance adhesion maps, and dwell force-distance measurements. Key parameters that are measured using the colloidal probe nanoscopy method presented in this paper include the snap-in, max load, and separation energy values. Snap-in is a measurement of the attractive forces, max load the value of the maximum adhesion force, and the separation energy conveys the energy required to withdraw the particle from contact. These values can be measured through instantaneous or dwell force measurements. Two different types of dwell measurements include deflection and indentation. The length and type of dwell measurement can be specifically chosen to mimic specific interactions that are present within a system of interest. An example is using deflection dwell - which holds the samples in contact at a desired deflection value – to evaluate the adhesive bonds that develop in aggregates formed in dispersions. The adhesive bonds formed can be measured as a function of time and can provide insight into the forces required to redisperse the aggregates after prolonged storage. The plethora of data that can be obtained using this method is a testament to the versatility of the method.

Access restricted. Please log in or start a trial to view this content.

Protocol

1. Preparing the Colloidal Probe and AFM Substrate

  1. To prepare colloidal probes, use a method developed previously by the authors.19
    1. In brief, use a 45° angle holder to affix a tipless cantilever at the specific angle of 45° (Figure 1A).
    2. Prepare an epoxy slide by smearing a thin layer of epoxy onto a microscope slide. Use a clean spatula or a slow stream of nitrogen to ensure that the layer of epoxy added to the microscope slide is of minimal height.
    3. Affix the epoxy slide to a 40X optical zoom microscope lens using a custom designed holder (Figure 1B). Then use the cantilever to approach the epoxy slide and acquire a small amount of epoxy on the cantilever.
    4. Repeat these steps to also attach a single particle of interest at the apex of the cantilever (Figure 1C).
  2. Prepare the AFM substrate by affixing colloidal particles onto an AFM coverslip using a thermoplastic mounting adhesive.
    1. Heat a 35 mm round cover slip to 120 °C, and apply a small amount of the adhesive to the coverslip. The high temperature is necessary to melt the thermoplastic adhesive for application.
    2. Then cool, the coverslip to 40 °C before dusting the colloidal particles onto the glue. NOTE: At 40 °C the glue is sufficiently set that the particles will not become embedded into the glue, but the glue is sticky enough to ensure that the particles will adhere to the substrate.
    3. Further cool the coverslip to RT and use a gentle stream of nitrogen to blow off any excess unattached particles.
    4. Wash the substrate several times with the liquid medium that will be used for colloidal probe measurements to ensure that all unattached particles are removed from the substrate. NOTE: This is important to reduce the effects of free flowing particles during the measurement, which can interact with the cantilever and introduce errors in the results.

2. Mounting the Colloidal Probe, Aligning Laser, and Equilibrating System

  1. Mount the coverslip with the colloidal particles into the bottom half of a liquid cell, making sure that the O-ring is seated properly to prevent any leaking.
  2. Place a hydrophobic transparent sheet onto the microscope stage to guard against any liquid that may leak during the experiment, especially if only using the bottom half of a liquid cell for the measurement, and place the liquid cell onto the microscope stage. NOTE: For simplicity one can use only the bottom half of a liquid cell, given that the system can be equilibrated adequately; tip – the evaporation changes the condition of the measurement and impacts the results/reading.
  3. Attach the colloidal probe to the AFM scanning head and assemble onto the AFM. With the AFM instrument software on, use the knobs on the scanning head to bring the cantilever tip into focus. NOTE: All procedural steps and measurements were completed using an MFP-3D-Bio AFM with Asylum Research software.
  4. To maximize intensity, align the laser onto the tip of the cantilever using the appropriate adjustment knobs on the scanning head.
  5. Allow the system to equilibrate for 5-10 min or until the deflection value stabilizes. Use the deflection adjustment knob to bring the deflection to zero or slightly negative.
  6. After the system has equilibrated in air, use the AFM software (Thermal Panel in the Master Panel window) to thermally calculate the InvOLS (sensitivity) and spring constant of the colloidal probe. NOTE: This sensitivity will be temporarily used until the true sensitivity is measured at the completion of the measurement (see step 4).
    1. Select either “Cal Spring Constant” or “Cal InvOLS” and then click on “Capture Thermal Data”.
    2. Once a prominent peak is apparent, stop capturing data, and click to zoom over the main peak.
    3. Click on “Initialize Fit” followed by “Fit Thermal Data,” to obtain the automatically calculated spring constant or InvOLS values.
  7. Slowly add 2 ml of the liquid medium to the liquid cell using a syringe and ensure that no bubbles are present around the cantilever. Re-align the laser, since the refractive index of the medium has now changed, and once again equilibrate the system allowing the deflection value to stabilize before adjusting the deflection back to zero. NOTE: If a large temperature difference exists between the environment and liquid, equilibration will take longer.

3. Imaging and Data Acquisition

  1. Set the initial scan size to 20 µm, scan rate to 1 Hz, scan angle to 90°, set point to 0.2 V and obtain a scan of the sample. Adjust the gain as needed to obtain overlapped trace and retrace curves.
  2. Once a particle of interest is found, immediately zoom onto that particle to limit extended probe interactions with the substrate prior to obtaining force volume measurements.
  3. Once zoomed in, acquire a sufficient image of a single particle or portion of a single particle. Then switch to the Force Panel in the software. Bring the red position bar to the highest position, set the force distance to 5 µm, scan rate to 0.1 Hz, trigger channel to none and conduct a single force measurement. Make sure the probe does not contact the substrate.
  4. From the single measurement graph obtained, calculate the virtual deflection line by right clicking on the graph window, and selecting the “Calculate Virtual Def Line” option. This will automatically calculate the virtual deflection and update the value as needed within the software.
  5. Change the trigger channel to deflection and set the trigger point to 20 nm. Set the force distance to 1 µm and adjust the scan velocity as desired depending on the measured forces of interest.
  6. Manually adjust the value for the deflection Inverse Optical Lever Sensitivity (InvOLS) in the Review Force Panel after conducting 2-3 consecutive preliminary single force measurements.
    1. Conduct a single force measurement, then click on the “Review” button on the Force Panel which opens up a Master Force Panel.
    2. Highlight the most recently completed force measurement. Under the “Axis” heading ensure that only “DeflV” is checked. Change the “X-Axis” input field to “Sep” using the dropdown menu and click on “make graph.”
    3. Click on the “Parm” tab on the Master Force Panel and adjust the value of “InvOLS” until the contact region of the graph is completely vertical. Then populate this value in the “Defl InvOLS” field located under the Cal sub-tab in the Force tab located on the main Master Panel window.
    4. Repeat this 2-3 times to ensure that the InvOLS value does not change significantly.
  7. Now that all parameters have been set up, ensure that the liquid medium level is still sufficient and that the deflection is still stable. NOTE: At this time, single force curves or force maps can be obtained. If dwell force measurements are desired, the dwell options can be accessed in the Force Panel.

4. Post-tuning of Sensitivity for Analysis

  1. After the completion of measurement acquisition, measure the true sensitivity of the colloidal probe. To do this, conduct a force measurement using a relatively large deflection/force with the colloidal probe in the same liquid medium against an “infinitely” hard surface such as mica. NOTE: Sensitivity was obtained after completion of the experiments because the large deflection/force may damage colloidal probes prepared with porous or fragile colloids.
  2. The slope of the contact region is used by the software to automatically calculate the sensitivity (Figure 2). Use this true value of sensitivity during data analysis of all the curves obtained using that particular colloidal probe.

Access restricted. Please log in or start a trial to view this content.

Results

Liquid colloidal systems are used for several pharmaceutical drug delivery systems. For inhalation drug delivery, a common colloidal system is the suspension pressurized metered dose inhaler (pMDI). Particle interactions present within the pMDI play a vital role in formulation physical stability, storage, and drug delivery uniformity. In this manuscript, inter-particle forces between porous lipid-based particles (~2 µm optical mean particle diameter) in a model propellant (2H,3H-perfluoropentane) were evaluated at R...

Access restricted. Please log in or start a trial to view this content.

Discussion

Several sources of system instability present during liquid colloidal probe nanoscopy can easily be mitigated through proper equilibration procedures. Instabilities as discussed previously result in erroneous results and force curves that are more difficult to analyze objectively. If all sources of instability have been tended and graphs similar to that shown in Figure 4 are still present, another measurement parameter may be the reason. Other measurement parameters that are important to consider during ...

Access restricted. Please log in or start a trial to view this content.

Disclosures

The authors declare that they have no competing financial interests.

Acknowledgements

The authors acknowledge (1) financial supports from Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine in Dankook University, and from the Priority Research Centers Program (No. 2009-0093829) funded by NRF, Republic of Korea, (2) the facilities, and the scientific and technical assistance, of the Australian Centre for Microscopy and Microanalysis at the University of Sydney. HKC is grateful to the Australian Research Council for the financial supports through a Discovery Project grant (DP0985367& DP120102778). WCh is grateful to the Australian Research Council for the financial supports through a linkage Project grant (LP120200489, LP110200316).

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
Double-Bubble EpoxyHardman4004
Veeco Tipless ProbesVeecoNP-O10 
Porous ParticlesPearl Therapeutics
Atomic Force Microscope (MFP)Asylum MFP-3D
SPIP Scanning Probe Image Processor SoftwareNanoScience  Instruments
35 mm CoverslipsAsylum504.003
TempfixTed Pella. Inc.16030

References

  1. Sindel, U., Zimmermann, I. Measurement of interaction forces between individual powder particles using an atomic force microscope. Powder Technology. 117, 247-254 (2001).
  2. Ducker, W. A., Senden, T. J., Pashley, R. M. Direct measurement of colloidal forces using an atomic force microscope. Nature. 353, 239-241 (1991).
  3. Israelachvili, J. N., Adams, G. E. Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. Journal of the Chemical Society, Faraday Transactions. 1, 975-1001 (1978).
  4. Upadhyay, D., et al. Magnetised thermo responsive lipid vehicles for targeted and controlled lung drug delivery. Pharmaceutical Research. 29, 2456-2467 (2012).
  5. Chrzanowski, W., et al. Biointerface: protein enhanced stem cells binding to implant surface. Journal of Materials Science: Materials in Medicine. 23, 2203-2215 (2012).
  6. Chrzanowski, W., et al. Nanomechanical evaluation of nickel–titanium surface properties after alkali and electrochemical treatments. Journal of The Royal Society Interface. 5, 1009-1022 (2008).
  7. Tran, C. T., Kondyurin, A., Chrzanowski, W., Bilek, M. M., McKenzie, D. R. Influence of pH on yeast immobilization on polystyrene surfaces modified by energetic ion bombardment. Colloids and Surfaces B: Biointerfaces. 104, 145-152 (2013).
  8. Page, K., et al. Study of the adhesion of Staphylococcus aureus to coated glass substrates. Journal of materials science. 46, 6355-6363 (2011).
  9. Binnig, G., Quate, C. F., Gerber, C. Atomic force microscope. Physical Review Letters. 56, 930-933 (1103).
  10. Butt, H. -J. Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophysical Journal. 60, 1438-1444 (1991).
  11. Johnson, K., Kendall, K., Roberts, A. Surface energy and the contact of elastic solids. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 324, 301-313 (1971).
  12. Deraguin, B., Landau, L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim: USSR. 14, 633-662 (1941).
  13. Derjaguin, B., Muller, V., Toporov, Y. P. Effect of contact deformations on the adhesion of particles. Journal of Colloid and Interface Science. 53, 314-326 (1975).
  14. Verwey, E. J. W., Overbeek, J. T. G. Theory of the stability of lyophobic colloids. DoverPublications.com, doi:10.1021/j150453a001. , (1999).
  15. Kappl, M., Butt, H. J. The colloidal probe technique and its application to adhesion force measurements. Particle & Particle Systems Characterization. 19, 129-143 (2002).
  16. Tran, C. T., Kondyurin, A., Chrzanowski, W., Bilek, M. M., McKenzie, D. R. Influence of pH on yeast immobilization on polystyrene surfaces modified by energetic ion bombardment. Colloids and Surfaces B: Biointerfaces. , (2012).
  17. Sa, D. J., de Juan Pardo, E. M., de Las Rivas Astiz, R., Sen, S., Kumar, S. High-throughput indentational elasticity measurements of hydrogel extracellular matrix substrates. Applied Physics Letters. 95, 063701-063701 (2009).
  18. Zauscher, S., Klingenberg, D. J. Friction between cellulose surfaces measured with colloidal probe microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 178, 213-229 (2001).
  19. Sa, D., Chan, H. -K., Chrzanowski, W. Attachment of Micro- and Nano-particles on Tipless Cantilevers for Colloidal Probe Microscopy. International Journal of Colloid and Interface. , (2014).

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keywords Colloidal Probe NanoscopyAtomic Force MicroscopeParticle particle InteractionsAdhesive PropertiesBinding EnergiesPhysical StabilityCoagulation KineticsColloidal SystemsEmulsionsFoamsSuspensionsPharmaceuticalsFoodsPaintsPaperSoilMineralsDetergentsPrintingDrug DiscoveryFormulation Development

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved