A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here we present a protocol to propagate Homalodisca vitripennis cells and HoCV-1 in vitro. Medium was removed from HoCV-1 positive cultures and RNA extracted every 24 hr for 168 hr. Cell survivability was quantified by trypan blue staining. Whole virus particles were extracted post-infection. Extracted RNA was quantified by qRT-PCR.
The glassy-winged sharpshooter (Homalodisca vitripennis) is a highly vagile and polyphagous insect found throughout the southwestern United States. These insects are the predominant vectors of Xylella fastidiosa (X. fastidiosa), a xylem-limited bacterium that is the causal agent of Pierce's disease (PD) of grapevine. Pierce’s disease is economically damaging; thus, H. vitripennis have become a target for pathogen management strategies. A dicistrovirus identified as Homalodisca coagulata virus-01 (HoCV-01) has been associated with an increased mortality in H. vitripennis populations. Because a host cell is required for HoCV-01 replication, cell culture provides a uniform environment for targeted replication that is logistically and economically valuable for biopesticide production. In this study, a system for large-scale propagation of H. vitripennis cells via tissue culture was developed, providing a viral replication mechanism. HoCV-01 was extracted from whole body insects and used to inoculate cultured H. vitripennis cells at varying levels. The culture medium was removed every 24 hr for 168 hr, RNA extracted and analyzed with qRT-PCR. Cells were stained with trypan blue and counted to quantify cell survivability using light microscopy. Whole virus particles were extracted up to 96 hr after infection, which was the time point determined to be before total cell culture collapse occurred. Cells were also subjected to fluorescent staining and viewed using confocal microscopy to investigate viral activity on F-actin attachment and nuclei integrity. The conclusion of this study is that H. vitripennis cells are capable of being cultured and used for mass production of HoCV-01 at a suitable level to allow production of a biopesticide.
The glassy-winged sharpshooter (Homalodisca vitripennis Germar 1821) has been identified as the predominant vector of Xylella fastidiosa (X. fastidiosa), the causal agent of Pierce’s disease of grapevine (PD) in North America1. Insect population management has quickly become the focus of research to combat this devastating problem to the viticulture industry in California and across the southern United States. A positive-sense, single-stranded RNA virus belonging to the family Dicistroviridae, Homalodisca coagulata virus-01 (HoCV-01) has been identified in wild H. vitripennis populations and shown to increase mortality in those populations2-4, while lowering the insect’s resistance to insecticides.
Development of methods to effectively rear infected H. vitripennis to adulthood in a laboratory setting have been difficult because H. vitripennis have different stage-specific nutritional needs that require a variety of host plants5-8. Specific facilities are required to rear live H. vitripennis in the United States; therefore, cell culture is more economical and a viable alternative, as well as increasingly vital for HoCV-01 detection and replication2,9. While basic methods for establishing cell cultures of H. vitripennis are described, these methods have not yet been utilized for commercial production of biological control agents, such as viruses2.
The overall goal of the following procedures is to produce a high concentration of HoCV-01 suitable for utilization as a biological control agent. Viral replication requires a living cell, which is why successfully cultivating and optimizing H. vitripennis cultures is vital to the progress of producing profitable levels of virus.
1. Cell Culture
NOTE: Homalodisca vitripennis cell lines established by the Dr. Wayne Hunter laboratory at the USDA Agricultural Research Service (Ft. Pierce, FL USA) were used to initiate a lab stock composed of mixed cell stages including initial fibroblasts and monolayers.
2. Whole Virus Extraction
3. Viral Replication
4. Virus Extraction from Cell Culture
5. RNA Extraction
6. RT-PCR
7. Confocal Microscopy
Cell attachment and growth was seen within 48 hr of passage in both small and large culture flasks, from primary cultures and continued passages. Fibroblast growth and development was also observed within this time frame. When newly seeded flasks were disturbed before 48 hr, there was a visible decline in cell attachment, leading to slower growing cultures and sometimes no attachment or growth at all. Cells were approximately 80% confluent within one week of passing and formed a monolayer in 10-14 days (Figure 1<...
Rising concerns regarding the influx of invasive agricultural species have lead to an increased demand for new methodologies to defend against emerging pests and pathogens. A focus of disease prevention and management involves the management of pathogen vectors and was the primary target of this study. Economics play a vital role in the decision to produce this type of biopesticide to manage pathogen vectors in agriculture because the practical application needs to be large quantities over large areas but at a low cost
The authors have nothing to disclose.
We would like to thank the Texas Pierce’s Disease Research and Education Program and USDA-APHIS for their funding support for this project. We would also like to thank Hema Kothari at the University of Texas Health Science Center at Tyler for her assistance with confocal microscopy.
Name | Company | Catalog Number | Comments |
Corning cell culture flasks | Sigma Aldrich | CLS430168 | Surface area 25 cm2, canted neck, cap (plug seal) |
Olympus DP30BW, IX2-SP, IX71 | Olympus | Inverted microscope and camera | |
Trypsin-EDTA solution | Sigma Aldrich | T4049 | 0.25%, sterile-filtered, BioReagent, suitable for cell culture, 2.5 g porcine trypsin and 0.2 g EDTA • 4Na per liter of Hanks′ Balanced Salt Solution with phenol red |
Greiner CELLSTAR multiwell culture plates | Sigma Aldrich | M8937 | 48 wells (TC treated with lid) |
DETCA | Sigma Aldrich | 228680 | Sodium diethyldithiocarbamate trihydrate |
Corning bottle-top vacuum filter system | Sigma Aldrich | CLS431206 | Cellulose acetate membrane, pore size 0.45 μm, membrane area 54.5 cm2, filter capacity 500 ml |
Brij 52 | Sigma Aldrich | 388831 | Polyethylene glycol hexadecyl ether |
Phosphate buffer solution | Sigma Aldrich | P5244 | Received as 100 mM diluted to 10 mM with sterile water |
TRIzol LS | Life Technologies | 10296-028 | |
Agarose | Sigma Aldrich | A5304 | For electrophoresis |
Ethidium bromide | Sigma Aldrich | E7637 | BioReagent, for molecular biology, powder |
QIAquick | Qiagen | 28704 | |
QuantiTect qRT-PCR kit | Qiagen | 204243 | |
4% paraformaldehyde | Sigma Aldrich | P6148 | Reagent grade, crystalline |
PBS | Sigma Aldrich | P5368 | Phosphate buffered saline |
Triton X-100 | Sigma Aldrich | X100 | |
Bovine serum albumin (BSA) | Sigma Aldrich | A2153 | |
Rhodamine red-conjugated phalloidin | Life Technologies | R415 | Rhodamine phalloidin is a high-affinity F-actin probe conjugated to the red-orange fluorescent dye, tetramethylrhodamine |
DAPI | Sigma Aldrich | D9542 | |
ProLong Gold Antifade Reagent | Life Technologies | P36934 | |
LSM510 Meta Confocal System | Carl Zeiss | ||
LSM Zen 2007 Software | Carl Zeiss | ||
Grace’s Insect medium (supplemented, 1x) | Sigma Aldrich | G8142 | H2G+ leafhopper medium component |
L-histidine monohydrate | Sigma Aldrich | H8125 | H2G+ leafhopper medium component |
Medium 199 (10x) | Sigma Aldrich | M4530 | H2G+ leafhopper medium component |
Medium 1066 (1x) | Sigma Aldrich | C0422 | H2G+ leafhopper medium component |
Hank’s Balanced Salts (1x) | Sigma Aldrich | 51322C | H2G+ leafhopper medium component |
L-Glutamine (100x) | Sigma Aldrich | G3126 | H2G+ leafhopper medium component |
MEM, amino acid mix (50x) | Sigma Aldrich | 56419C | H2G+ leafhopper medium component |
1 M MgCl solution | Sigma Aldrich | M8266 | H2G+ leafhopper medium component |
Pen-Strep (w/ glutamine) | Sigma Aldrich | G6784 | H2G+ leafhopper medium component |
Nystatin | Sigma Aldrich | N6261 | H2G+ leafhopper medium component |
Gentamycin | Sigma Aldrich | 46305 | H2G+ leafhopper medium component |
Dextrose | Sigma Aldrich | D9434 | H2G+ leafhopper medium component |
Fetal Bovine Serum | Sigma Aldrich | F2442 | H2G+ leafhopper medium component |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved