A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Cell migration is an important part of human development and life. In order to understand the mechanisms that can alter cell migration, we present a planar gradient diffusion system to investigate chemotaxis in a 3D collagen matrix, which allows one to overcome modern diffusion chamber limitations of existing assays.
The importance of cell migration can be seen through the development of human life. When cells migrate, they generate forces and transfer these forces to their surrounding area, leading to cell movement and migration. In order to understand the mechanisms that can alter and/or affect cell migration, one can study these forces. In theory, understanding the fundamental mechanisms and forces underlying cell migration holds the promise of effective approaches for treating diseases and promoting cellular transplantation. Unfortunately, modern chemotaxis chambers that have been developed are usually restricted to two dimensions (2D) and have complex diffusion gradients that make the experiment difficult to interpret. To this end, we have developed, and describe in this paper, a direct-viewing chamber for chemotaxis studies, which allows one to overcome modern chemotaxis chamber obstacles able to measure cell forces and specific concentration within the chamber in a 3D environment to study cell 3D migration. More compelling, this approach allows one to successfully model diffusion through 3D collagen matrices and calculate the coefficient of diffusion of a chemoattractant through multiple different concentrations of collagen, while keeping the system simple and user friendly for traction force microscopy (TFM) and digital volume correlation (DVC) analysis.
The preferred movement of cells towards a concentration gradient, known as chemotaxis, plays an important role in pathological and physiological processes in the body. Such examples are skin and mucosa wound healing1, morphogenesis2, inflammation3, and tumor growth4,5. It has also been shown that cancer cells can migrate through both individual and collective cell-migration strategies6. Moreover, diffusional instability mechanisms can induce the separation of single or clustered cells from a tumorous body/object and then can immigrate towards a source of nutrients and thus invade wider areas and tissues7.
Furthermore, it has been shown that diverse migration mechanisms can be active in 2D and in 3D, due to different roles of adhesion molecules8. Therefore, a move to physiologically relevant in vitro assays to investigate cell motility in a measureable and simple way is of significance in understanding cell movement phenomena9. Unfortunately, the difficulty in analyzing cell migration, a comprehensive quantifiable chemotaxis assay usually requires a long laborious method, founded on the measurement of impartial cell motility and transport phenomena models.
Past experimental approaches to investigate cell chemotaxis include the Boyden chamber10 and the under agarose assay11. However, within these early assays, cell migration experiments did not monitor the movement in respect to time. More, importantly, the concentration gradients used for the experiments were not well defined or completely understood while only sustaining the signaling for no more than a few hr. Furthermore, early chemotaxis chamber attempts restricted cell migration to two dimensions and did not allow one to monitor the kinetics of migration12. Looking at the Boyden chamber, an endpoint assay would not allow the researcher to observe migration visually and could not directly differentiate chemotaxis (directional movement) from chemokinesis (random movement). Additionally, several variables—differences in the pore size and thickness of membranes—made the chamber very difficult to easily reproduce and concealed the migrant reaction of cells to chemokines13,14.
With the new understanding of microfluidics, new chambers and micro-devices have been investigated as an instrument to investigate cell locomotion under interstitial flow conditions or chemotaxis15,16. Under these new devices, new cell metrics were introduced and investigated, like the effect of shear stress on a cell17,18. Unfortunately, past and current microfluidic chemotaxis chambers limited studies of cell migration to 2D substrates—an important setback since many biological processes, including tumor cell invasion and metastasis, and immune cell migration, involve 3D migration.
Direct observation chambers—where a chemoattractant solution is in contact with a 3D gel containing cells have also been also reported19,20. These chambers have two compartments, one containing a chemoattractant and one containing cells, are joined beside one another horizontally21 or as concentric rings22. These systems are pointed in the right direction, but do not keep a chemotaxis system for an extended period of time.
Furthermore, researchers have also examined diffusivity through collagen membranes in dialysis cells, as well as the diffusion of tracer molecules through collagen samples subjected to hydrostatic pressure23-25. Some diffusion experiments in collagen gels rely on physical and chemical modifications of the gel using magnetic fields and chemical incorporation26. A popular method for modeling diffusivity in collagenous tissues relies on the fluorescence imaging of continuous point photobleaching. This method has revealed anisotropy in the diffusion coefficients of macromolecules in oriented collagenous tissues. Yet, photobleaching has been used in articular cartilage and not collagen matrices. While similar, the necessary modeling experiments must be carried through specifically understanding the diffusion coefficient of collagen gels. More importantly, the systems do not utilize a method for measuring cell force generation.
Unfortunately, most systems seem to be missing one or two key elements for an ideal system: the allowing of cell tracking, a diffusion gradient understanding with a chemotactic factor through the matrix, a relatively simple set up with an ease of reproducibility, the minimization of cell-cell interactions, and the ability to measure dimensional units for quantification (i.e., velocity, force, specific concentration). Moghe et al.27 proposed a system that fulfilled most of these requirements in which cells were initially dispersed throughout the gel rather than concentrated on the filter surface, but was difficult to measure forces that the cell generates.
To this purpose, we present a planar gradient diffusion system to investigate chemotaxis in a 3D collagen matrix, which allows one to overcome modern diffusion chamber limitations of existing assays, which is based on time-lapse microscopy, coupled with image analysis techniques to measure cell forces in a 3D environment. This protocol provides a simple, yet innovative way of creating a simple 3D diffusion chamber that can be used to investigate 3D chemotaxis in different cells.
1. 3D Mold Design and Parts
2. Mold Assembly
3. Collagen Mixture and 3D Matrix
4. Imaging and Diffusion Modeling
5. Experimental Measurements
6. Tracking Cell Migration Utilizing TFM
The ability of this assay to accurately assess the migration of the cell relies upon a good setup of the system. Therefore, it is critical for make sure to design the diffusion system mold accurately and take great care in placing both hydrophobic and hydrophilic coverslips, as illustrated in Figure 1. If the system is properly designed and during the diffusion modeling stage ensuring to find a very good linear starting line, one is able to achieve nice fluoresces images, as depicted in Figure 2<...
The most critical steps for successful diffusion experiments with or without cells are: correctly setting up the mold assembly; developing the necessary manual dexterity to prevent damage during extraction of hydrophobic coverslips; ensuring to find a very good linear starting line to correctly calculate the diffusion coefficient; correct experimental calculations of both collagen and chemoattractant; correctly use of live cell imaging system to ensure matrix does not dry out; and maintaining a sterile, healthy culture.<...
The authors declare that they have no competing financial interests.
The authors would like to acknowledge Drs. Jonathan Reichner and Angle Byrd for cell experiment insight. The National Science Foundation Graduate Research Fellowship Program (GRFP) supported this work.
Name | Company | Catalog Number | Comments |
Silicone elastomer kit | Dow Corning Corp | 182 SIL ELAST KIT .5KG | a two-part misture with a 10:1 mix |
Live cell imaging chamber | Live Cell Instrument | CM-B18-1 | CMB for 18 mm round coverslips |
22 mm Glass Coverslip | Fisher Scientific | NC0180281 | Neuvitro Corp. cover slip 22 mm 1.5 |
Machined aluminum metal cube | |||
Hobby utility knife | X-Acto | X3201 | |
3-(aminopropyl) trimethoxysilane | Sigma-Aldrich | 281778-5ML | |
Glutaraldehyde | Polysciences, Inc | 00216A-10 | Glutaraldehyde, EM Grade, 8% |
50 ml tube | Fisher Scientific | 14-432-22 | Standard floor model and tabletop centrifuges |
Glass Petri dish | Fisher Scientific | 08-747A | Reusable Petri Dishes: Complete (60 x 15 mm) |
Forceps | Fisher Scientific | 22-327-379 | Fine Point Forceps |
Cover glasses | Fisher Scientific | 12-518-105A | Rectangle; 30 x 22 mm; Thickness No. 1 |
Tridecafluoro-1,1,2,2-tetrahydrooctyl | Gelest | SIT8174.0 | |
Acetic acid | Sigma-Aldrich | 320099 | Acetic acid ACS reagent, ≥99.7% |
Hexane | Sigma-Aldrich | 296090 | anhydrous, 95% |
Ethyl alcohol | Sigma-Aldrich | E7023 | 200 proof, for molecular biology |
High-precision diamond scribing tool | Lunzer | PV-081-3 | Straight extended tip scribe, .020" (.50 mm) diameter by .200" (5.0 mm) tip length |
Vacuum grease | Dow Corning | 14-635-5C | High-Vacuum Grease |
15 ml tube | Fisher Scientific | 14-959-49D | 15 ml conical centrifuge tubes with hydrophobic, biologically inert surface |
10x phosphate buffered solution | Fisher Scientific | BP399-500 | 1.37 M Sodium Chloride, 0.027 M Potassium Chloride, and 0.119 M Phosphate Buffer |
1 N sodium hydroxide | Sigma-Aldrich | 38215 | Sodium hydroxide concentrate |
Collagen I, rat tail | BD Biosciences | 354236 | Rat tail |
Micro centrifuge tube | Fisher Scientific | 02-681-332 | Volume: 2.0 ml; O.D. x L: 13 x 40 mm; sterile; single-wrapped |
[header] | |||
Carboxylate-modified microspheres | Invitrogen | F-8813 | Carboxylate-modified microspheres, 0.5 µm, yellow-green fluorescent (505/515), 2% solids |
Rhodamine | Sigma-Aldrich | 83689 | Rhodamine B for fluorescence |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved