A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Non-aqueous electrode processing is central to the construction of coin cells and the evaluation of new electrode chemistries for lithium-ion batteries. A step-by-step guide to the basic practices needed as an electrochemical engineer working with batteries in an academic experimental setting is furnished.
Research into new and improved materials to be utilized in lithium-ion batteries (LIB) necessitates an experimental counterpart to any computational analysis. Testing of lithium-ion batteries in an academic setting has taken on several forms, but at the most basic level lies the coin cell construction. In traditional LIB electrode preparation, a multi-phase slurry composed of active material, binder, and conductive additive is cast out onto a substrate. An electrode disc can then be punched from the dried sheet and used in the construction of a coin cell for electrochemical evaluation. Utilization of the potential of the active material in a battery is critically dependent on the microstructure of the electrode, as an appropriate distribution of the primary components are crucial to ensuring optimal electrical conductivity, porosity, and tortuosity, such that electrochemical and transport interaction is optimized. Processing steps ranging from the combination of dry powder, wet mixing, and drying can all critically affect multi-phase interactions that influence the microstructure formation. Electrochemical probing necessitates the construction of electrodes and coin cells with the utmost care and precision. This paper aims at providing a step-by-step guide of non-aqueous electrode processing and coin cell construction for lithium-ion batteries within an academic setting and with emphasis on deciphering the influence of drying and calendaring.
Lithium-ion batteries represent a promising source to fulfill the ever increasing requirements of energy storage devices1-4. Improvements in the capacity of LIBs would not only improve the effective range of electric vehicles5,6, but also improve their cycle life by reducing the depth of discharge, which in turn increases the viability of LIBs for use in grid energy storage applications7.
Originally used for hearing aids in the 1970s8, coin cells today are commonly used in the development and evaluation of new and existing electrode materials. As one of the smallest form factors for batteries, these cells represent a simple and effective way to create batteries in an academic research setting. A typical Lithium-Ion battery consists of a cathode, anode, current collectors, and a porous separator that prevents shorting of the anode and cathode. During the operation of a Lithium-Ion battery, ions and electrons are mobile. During discharge, ions travel from the negative electrode (anode) through the porous separator and into the positive electrode, or cathode. Meanwhile, electrons travel through the current collector, across the external circuit, finally recombining with the ions on the cathode side. In order to reduce any resistances associated with ion and electron transfer, the components need to be properly oriented — the distance ions travel should be minimized. Typically these components are combined a "sandwich" configuration. Batteries used in electric vehicles, cell phones, and consumer electronics consist of large sandwiches that are spirally wound or folded, depending on the form factor of the battery. These types of cells can be very difficult to manufacture on small scales without incurring high costs. However, in a coin cell there is only a single sandwich within the cell. Although specialized equipment is still necessary to create the electrodes in coin cells, the cells themselves can be quickly assembled by hand and sealed within a controlled environment.
The performance of batteries, regardless of type, is dependent on the materials that form the positive and negative electrode, the choice of electrolyte, and the cell architecture4,9-13. A typical LIB electrode is composed of a combination of Li-containing active material, conductive additive, polymeric binder, and void space that is filled with an electrolyte. Electrode processing can be organized into five main steps: dry powder mixing, wet mixing, substrate preparation, film application, and drying — a step that is often given little attention. When producing an electrode using these processing steps, the end goal is to achieve a uniform electrode film consisting of the active material, conductive additive, binder. This uniform distribution is critical to optimal performance of LIBs14-18.
This guide represents the steps utilized at Texas A&M in the Energy and Transport Sciences Laboratory (ETSL) and at Texas State University to manufacture coin cells for the evaluation of new and existing electrode materials. Beyond the basic steps found documented in many sources, we have included our own expertise at critical steps, noting important details that are often left out of similar methods documents and many publications. Additionally, the primary physical and electrochemical methods utilized in our lab (galvanostatic cycling and Electrochemical Impedance Spectroscopy (EIS)) are elucidated within.
Caution should be exercised when using any of the solvents, reagents, or dry powders utilized in this protocol. Read all MSDS sheets and take appropriate safety measures. Standard safety equipment includes gloves, safety glasses, and a lab coat.
1. Cathode Preparation
Note: The schematic overview of the cathode fabrication process is presented in Figure 1.
Figure 1. Schematic overview of the steps utilized in the ETSL to create cathodes. The main process includes preparation and casting of the electrode slurry onto a cleaned aluminum substrate, followed by drying of the electrode sheet and incorporation into coin cells. Please click here to view a larger version of this figure.
2. Anode Sheet for Full Cell
3. Coin Cell Pre-assembly
Caution: The construction of coin cells is performed within an inert (Argon) environment within a glovebox. Extreme caution must be taken to minimize exposure of the internal environment to external atmosphere. Work with sharp materials within the glovebox should be minimized if possible. As a general rule, a task within the glovebox should take 3 times longer than the speed at which the task would be performed outside. Gloves should also be worn over the glovebox gloves to minimize exposure when working with different substances.
Note: The components needed for the construction of the coin cell, including the cap, case, wave springs, gaskets, spacers, lithium ribbon, electrolyte and remaining tools such as plastic tweezers (for component placement) are contained within an Argon-filled glovebox with O2 and H2O levels maintained below 0.5 parts per million. All components inserted into the glovebox (including lint-free task wipes) should be heated O/N in a vacuum oven at 120 °C at a pressure of -0.1 MPa to remove any moisture.
4. Coin Cell Assembly
Note: The configuration of the coin cell is presented in Figure 2.
Figure 2. Coin cell components displayed in order of placement within cell. Placement of the cathode is followed by the separator, gasket, counter electrode and wave spring, followed by sealing of the cell. Please click here to view a larger version of this figure.
5. Electrochemical Evaluation
A properly cast electrode sheet should appear uniform in surface appearance and properly adhere to the current collector. Typically flaking of the electrode sheet is caused by either poor etching of the substrate, or having to little NMP in the initial mixing stage. Alternatively, too much NMP can cause the sheet to display a higher degree of porosity, which is not desirable. Lastly, a third pattern can be observed on the electrode surface, where pooling appears to occur. Interactions wit...
The optimization of the wet mixing stages are crucial to the slurry viscosity and coating ability, which impacts the uniformity and adhesion of the electrode. Here a high-shear mixing method is utilized, where the solvent, additive, binder, and active material are mixed together utilizing the kinetic motions of the glass balls present in the vials. This mixing technique offers the benefit of much more rapid mixing times as compared to a magnetic stirrer method. Beyond this, this high shear mixing allows for more viscous ...
The authors have nothing to disclose.
This work is financially supported by Texas A&M University faculty research initiation grant (Mukherjee) and Texas State University start-up funding (Rhodes).
Name | Company | Catalog Number | Comments |
LiNiMNCoO2 (NMC, 1:1:1) | Targray | PLB-H1 | |
CNERGY Super C-65 | Timcal | ||
Polyvinylidene Difluoride (PVDF) | Kynar | Flex 2801 | |
1-Methyl-2-pyrrolidinone anhydrous, 99.5% NMP | Sigma-Aldrich | 328634 | |
1.0 M LiPF6 in EC/DEC (1:1 by vol) | BASF | 50316366 | |
Celgard 2500 Separator | MTI | EQ-bsf-0025-60C | 25um thick; Polypropylene |
Aluminum Foil | MTI | EQ-bcaf-15u-280 | |
Lithium Ribbon | Sigma Aldrich | 320080 | 0.75 mm thickness |
2-Propanol, ACS reagent, ≥99.5% | Sigma Aldrich | 190764 | |
Acetone, ACS reagent, ≥99.5% | Sigma Aldrich | 179124 | |
Stainless Steel CR2032 Coin Cell Kit | Pred Materials | case, cap, and PP gasket | |
Stainless Steel Spacer | Pred Materials | 15.5 mm diameter x 0.5 mm thickness | |
Stainless Steel Wave Spring | Pred Materials | 15 mm diameter x 1.4 mm height | |
Analytical Scale | Ohaus | Adventurer AX | |
Agate Mortar and Pestle | VWR | 89037-492 | 5 inch diameter |
Tube Drive | IKA | 3645000 | |
20 ml Stirring Tube | IKA | 3703000 | |
Glass balls | McMaster-Carr | 8996K25 | 6 mm diameter |
Automatic Film Applicator | Elcometer | K4340M10- | |
Doctor Blade | Elcometer | K0003580M005 | |
Die Set | Mayhew | 66000 | |
Vacuum Oven | MTI | ||
Vacuum Pump | MTI | ||
Laboratory Press | MTI | YLJ-12 | |
Hydraulic Crimper | MTI | MSK-110 | |
Glovebox | MBraun | LABstar | |
Battery Cycler | Arbin Instruments | BT2000 | |
Potentiostat/Galvanostat/EIS | Biologic | VMP3 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved