A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Proton Transfer Reaction Time of Flight Mass Spectrometry allows high-sensitivity, rapid and non-invasive analysis of volatile organic compounds. To demonstrate its potential, we give three examples: lactic acid fermentation of yogurt (on-line bioprocess monitoring), different apple genotypes (large-scale screening), and retronasal space after drinking coffee (nosespace analysis).
Proton Transfer Reaction (PTR), combined with a Time-of-Flight (ToF) Mass Spectrometer (MS) is an analytical approach based on chemical ionization that belongs to the Direct-Injection Mass Spectrometric (DIMS) technologies. These techniques allow the rapid determination of volatile organic compounds (VOCs), assuring high sensitivity and accuracy. In general, PTR-MS requires neither sample preparation nor sample destruction, allowing real time and non-invasive analysis of samples. PTR-MS are exploited in many fields, from environmental and atmospheric chemistry to medical and biological sciences. More recently, we developed a methodology based on coupling PTR-ToF-MS with an automated sampler and tailored data analysis tools, to increase the degree of automation and, consequently, to enhance the potential of the technique. This approach allowed us to monitor bioprocesses (e.g. enzymatic oxidation, alcoholic fermentation), to screen large sample sets (e.g. different origins, entire germoplasms) and to analyze several experimental modes (e.g. different concentrations of a given ingredient, different intensities of a specific technological parameter) in terms of VOC content. Here, we report the experimental protocols exemplifying different possible applications of our methodology: i.e. the detection of VOCs released during lactic acid fermentation of yogurt (on-line bioprocess monitoring), the monitoring of VOCs associated with different apple cultivars (large-scale screening), and the in vivo study of retronasal VOC release during coffee drinking (nosespace analysis).
Direct-Injection Mass Spectrometric (DIMS) technologies represent a class of analytical instrumental approaches that offer considerable mass and time resolution with high sensitivity and robustness, allowing the quick detection and quantification of volatile organic compounds (VOCs)1. These instrumental approaches include, among others, MS-e-noses, Atmospheric-Pressure Chemical Ionization Mass Spectrometry (APCI-MS), Proton-Transfer-Reaction Mass Spectrometry (PTR-MS), and Selected Ion-Flow-Tube Mass Spectrometry (SIFT-MS)1. The pros and the cons of each approach depend on: the kind of sample injection, the source and control of precursor ions, the control of the ionization process, and the mass analyzer1,2.
Proton-transfer-reaction mass-spectrometry (PTR-MS) was developed more than twenty years ago to monitor in real-time and with low detection limits (usually a few ppbv, part per billion by volume) most volatile organic compounds (VOCs) in air3,4. Current uses of PTR-MS range from medical applications, to food control, to environmental research5,6. The main features of this technique are: the possibility of rapid and continuous measurement, the intense and pure source of precursor ions, and the possibility to control ionization conditions (pressure, temperature and drift voltage). These features permit combining versatile uses with a high degree of standardization1,4. In fact, the method is based on reactions of hydronium ions (H3O+), which induce non-dissociative proton transfer in most volatile compounds (particularly in those characterized by a proton affinity higher than water), protonating neutral compounds (M) according to the reaction: H3O+ + M → H2O + MH+. In contrast to other techniques, e.g., APCI-MS, precursor ion generation and sample ionization are divided in two different instrumental compartments (a schematic representation of the PTR-MS instrument is given in Figure 1). An electrical discharge by water vapor in the hollow cathode ion source generates a beam of hydronium ions. After this phase, ions cross the drift tube, where the ionization of VOCs takes place7. Ions then enter a pulse extraction section and are accelerated into the TOF section. Through flight times, it is possible to determine the mass-to-charge ratios of the ions8. Each extraction pulse leads to a complete mass spectrum8 of the selected m/z range. Ion spectra are recorded by a fast data acquisition system7. A complete spectrum is typically acquired in one second although higher time resolution can be achieved according to the signal to noise level and a quantitative estimation of the VOC headspace concentration can be provided even without calibration9,10.
Figure 1: Schematic illustration of a PTR-MS. Schematic representation of the PTR-MS instrument. HC: external ion source with hollow cathode; SD: source drift; VI, venturi-type inlet; EM, electron multiplier; FC1-2, flow controllers. Reprinted with permission from Boschetti et al.7. Please click here to view a larger version of this figure.
In general, the PTR technique assures fast analysis time, high detection sensitivity and a relatively compact instrument size, requires neither sample preparation nor sample destruction and thus allows real time investigations11. PTR is of considerable interest in the environmental, atmospheric, food, technological, medical and biological sciences12.
VOCs associated with food matrices are of outstanding interest in food science and technology because of their important role in the molecular basis of biological phenomena linked to odor and flavor perception and, thus, in food acceptance. Hence, our interest in real time and non-invasive detection of VOCs mainly deals with sensory qualities of food. In addition, if we consider the possibility to detect spoilage and pathogenic microorganisms by means of released VOCs13 and/or to monitor volatile organic compounds as markers following technological processes (e.g. Maillard by-products during thermal treatments)14, it becomes clear how VOC identification and quantification are fields of interest in food quality management6. Several recent uses of PTR-MS technologies for the rapid monitoring and quantification of VOCs in food matrices testify to the wide range of application of these analytical approaches (Table 1).
Food matrix | Kind of application | Brief description | Reference |
Butter | Screening/characterization | Geographical origin of European butters | 15 |
Yogurt | Bioprocess monitoring | Evolution during lactic acid fermentation | 16 |
Cereal bars | In vivo measurement | Nosespace during consumption of cereal bars with varying sugar composition | 17 |
Liquid model systems | Simulated oral conditions | Evaluation of tongue pressure and oral conditions in a model mouth | 18 |
Apple | In vivo measurement | Nosespace during consumption apple with different genetic, textural, and physicochemical parameters | 19 |
Coffee | Screening/characterization | Differentiation of specialty coffees | 20 |
Grape must | Screening/characterization | Effect of cooking process | 21 |
Flavored candies | In vivo measurement | Determination on panelists using different direct mass spectrometry methods | 22 |
Ham | Screening/characterization | Effect of the pig rearing system | 23 |
Bread | Simulated oral conditions | Simulating bread aroma during mastication | 24 |
Milk | Screening/characterization | Monitoring photooxidation-induced dynamic changes in milk | 25 |
Coffee | Screening/characterization | Diversity in roasted coffees from different geographic origins | 26 |
Bread | Bioprocess monitoring | Effect of different yeast starters during alcoholic fermentation | 27 |
Coffee | In vivo measurement | Nosespace during consumption of different roasted coffee preparations | 28 |
Tomatoes | Screening/characterization | Impact of Production Location, Production System, and Variety | 29 |
Bread | Bioprocess monitoring | Effect of flour, yeast and their interaction during alcoholic fermentation | 30 |
Mushrooms | Screening/characterization | Shelf life of dried porcini mushrooms | 31 |
Yogurt | Bioprocess monitoring | Effect of different starter cultures during lactic fermentation | 32 |
Apple | Screening/characterization | Diversity in an apple germplasm collection | 33 |
Coffee | Screening/characterization | Tracing coffee origin | 34 |
Coffee | In vivo measurement | Combination of a dynamic sensory method and in-vivo nosespace analysis to understand coffee perception | 35 |
Table 1: List of scientific studies using PTR-ToF-MS in the food sector. Non-exhaustive list of scientific studies using PTR-based approaches to monitor VOC content in food-related experiments.
In recent studies, we reported on the application of PTR-ToF-MS coupled with an automated sampling system and tailored data analysis tools to increase sampling automation and reliability and, consequently, to enhance the potential of this technique7,10,13. This allowed us to screen, in terms of VOC content, large sample sets (e.g. food of different origins with many replicates, entire germoplasms), to analyze the influence of several experimental modes on VOC release (e.g. different concentrations of a given ingredient, diverse intensities of a specific technological parameter), and to monitor VOCs associated with a given bioprocess (e.g. enzymatic oxidation, alcoholic fermentation). Here, in order to exemplify the potential of PTR-ToF-MS in the agri-food sector, we present three paradigmatic applications: the detection of VOCs released during lactic acid fermentation of yogurt induced by different microbial starter cultures (on-line bioprocess monitoring), the monitoring of VOCs associated with different apple cultivars (large-scale screening) and the in vivo study of retronasal VOC release while drinking coffee (nosespace analysis).
Access restricted. Please log in or start a trial to view this content.
The protocol follows the guidelines of our institutional committee on human research ethics.
1. Sample Preparation and Autosampler Conditions
Food matrix | Number and kind of samples | Reference |
Apple | The authors screened a collection represented by 190 accessions, composed by both old and new apple cultivars | 33 |
Yogurt | Four starters were analyzed in terms of VOCs released during lactic fermentation of yogurt (A, FD-DVS YF-L812 Yo-Flex, Chr. Hansen; B, FD-DVS YC-380 Yo-Flex, Chr. Hansen; C, FD-DVS YC-X11 Yo-Flex, Chr. Hansen; D, YO-MIX 883, Danisco) | 32 |
Coffee | Three different kind of ground coffee obtained from a single pure Arabica coffee blend were used: medium roast, dark roast and decaffeinated medium roast | 28 |
Table 2: List of products analyzed. List of products analyzed with analogous procedures to the ones reported by Benozzi et al.32, Farneti et al.33,36, and Romano et al.28
2. Experimental Design and Practical Precautions
3. PTR-MS Instrument Optimization and Analysis
NOTE: The instrumental conditions are described in the references (e.g. Makhoul et al.27).
4. Tailored Data Analysis
NOTE: Tailored data analysis has been developed using a procedure in MATLAB.
Access restricted. Please log in or start a trial to view this content.
The volatile profile of samples resulted in a complete mass spectrum for the desired mass range acquired each second. In Figure 2, an example of the acquired average spectra during the yogurt on-line bioprocess is given32. In every spectrum, more than 300 mass peaks in the m/z range up to 250 Th can be identified32.
Access restricted. Please log in or start a trial to view this content.
Proton transfer reaction-mass spectrometry (PTR-MS) coupled to time of flight (ToF) mass analyzers represent a valid compromise between the need for identification and quantification of volatile organic compounds and the necessity for rapid analytical profiling. The high mass resolution that characterizes the ToF mass analyzer gives/provides relevant sensitivity and mass spectra with considerable informational content. Furthermore, the application of PTR-ToF-MS coupled with an auto-sampler and tailored data analysis tool...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This work is supported by the European Commission's 7th Framework Programme under Grant Agreement Number 287382. SY is a beneficiary of a European Commission's 7th Framework Programme Grant Agreement Number 287382. IK is a beneficiary of a FIRST doctoral school grant from the Fondazione Edmund Mach. For his work at University of Foggia, VC is supported by the Apulian Region in the framework of 'Future In Research' program (practice code 9OJ4W81).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
PTR-TOF 8000 High-Resolution PTR-TOF-MS | Ionicon Analytik Ges.m.b.H. | PTR-TOF 8000 | An detector for volatile organic compounds (VOCs) that allows for continuous VOC quantification with a very high mass resolution |
GERSTEL MPS 2XL | Gerstel | A multifunctional autosampler | |
Gas Calibration Unit | Ionicon Analytik Ges.m.b.H. | GCU-s / GCU-a | A dynamic gas dilution system that provides variable but known quantities of different standard compounds in a carrier gas stream |
TofDaq | Tofwerk AG | free available at http://soft.tofwerk.com/ | A data acquisition software (for spectra acquisition) |
MATLAB | MathWorks | http://it.mathworks.com/products/matlab/ | A technical computing language and interactive environment for algorithm development, data visualization, and data analysis |
R | The R Foundation | free available at https://cran.r-project.org/mirrors.html | A language and environment for statistical computing and graphics |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved