Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We present a strategic plan and protocol for identifying non-coding genetic variants affecting transcription factor (TF) DNA binding. A detailed experimental protocol is provided for electrophoretic mobility shift assay (EMSA) and DNA affinity precipitation assay (DAPA) analysis of genotype-dependent TF DNA binding.

Abstract

Population and family-based genetic studies typically result in the identification of genetic variants that are statistically associated with a clinical disease or phenotype. For many diseases and traits, most variants are non-coding, and are thus likely to act by impacting subtle, comparatively hard to predict mechanisms controlling gene expression. Here, we describe a general strategic approach to prioritize non-coding variants, and screen them for their function. This approach involves computational prioritization using functional genomic databases followed by experimental analysis of differential binding of transcription factors (TFs) to risk and non-risk alleles. For both electrophoretic mobility shift assay (EMSA) and DNA affinity precipitation assay (DAPA) analysis of genetic variants, a synthetic DNA oligonucleotide (oligo) is used to identify factors in the nuclear lysate of disease or phenotype-relevant cells. For EMSA, the oligonucleotides with or without bound nuclear factors (often TFs) are analyzed by non-denaturing electrophoresis on a tris-borate-EDTA (TBE) polyacrylamide gel. For DAPA, the oligonucleotides are bound to a magnetic column and the nuclear factors that specifically bind the DNA sequence are eluted and analyzed through mass spectrometry or with a reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by Western blot analysis. This general approach can be widely used to study the function of non-coding genetic variants associated with any disease, trait, or phenotype.

Introduction

Sequencing and genotyping based studies, including Genome-Wide Association Studies (GWAS), candidate locus studies, and deep-sequencing studies, have identified many genetic variants that are statistically associated with a disease, trait, or phenotype. Contrary to early predictions, most of these variants (85-93%) are located in non-coding regions and do not change the amino acid sequence of proteins1,2. Interpreting the function of these non-coding variants and determining the biological mechanisms connecting them to the associated disease, trait, or phenotype has proven challenging3-6. We have developed a general strategy to identify the molec....

Protocol

1. Preparation of Solutions and Reagents

  1. Order custom DNA oligonucleotide probes for use in EMSA and DAPA.
    1. To reduce non-specific protein binding, design short oligos (between 35-45 base pairs (bp) in length)30, and place the variant of interest directly in the center flanked by its 17 bp endogenous genomic sequence. For EMSA oligos, add a 5' fluorophore. For DAPA oligos, add a 5' biotin tag.
    2. Order both the sense strand and its reverse complement strand. Alternatively.......

Representative Results

In this section, representative results of what to expect are provided when performing an EMSA or DAPA, and the variability with regards to the quality of lysate is characterized. For example, it has been suggested that freezing and thawing protein samples multiple times may result in denaturation. In order to explore the reproducibility of EMSA analysis in the context of these "freeze-thaw" cycles, two 35 bp oligos differing at one genetic variant were incubated with a single bat.......

Discussion

Although advances in sequencing and genotyping technologies have greatly enhanced our capacity to identify genetic variants associated with disease, our ability to understand the functional mechanisms impacted by these variants is lagging. A major source of the problem is that many disease-associated variants are located in n on-coding regions of the genome, which likely affect harder-to-predict mechanisms controlling gene expression. Here, we present a protocol based on the EMSA and DAPA techniques, valuable molecular t.......

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Erin Zoller, Jessica Bene, and Lindsey Hays for input and direction in protocol development. MTW was supported in part by NIH R21 HG008186 and a Trustee Award grant from the Cincinnati Children's Hospital Research Foundation. ZHP was supported in part by T32 GM063483-13.

....

Materials

NameCompanyCatalog NumberComments
Custom DNA OligonucleotidesIntegrated DNA Technologieshttp://www.idtdna.com/site/order/oligoentry
Potassium ChlorideFisher ScientificBP366-500KCl, for CE buffer
HEPES (1M)Fisher Scientific15630-080For CE and NE buffer
EDTA (0.5M), pH 8.0Life TechnologiesR1021For CE, NE, and annealing buffer
Sodium ChlorideFisher ScientificBP358-1NaCl, for NE buffer
Tris-HCl (1M), pH 8.0InvitrogenBP1756-100For annealing buffer
Phosphate Buffered Saline (1X)Fisher ScientificMT21040CMPBS, for cell wash
DL-Dithiothreitol solution (1M)Sigma646563Reducing agent
PMSFThermo Scientific36978Protease Inhibitor
Phosphatase Inhibitor Cocktail Thermo Scientific78420Prevents dephosphorylation of TFs
Nonidet P-40 SubstituteIBI ScientificIB01140NP-40, for nuclear extraction
BCA Protein Assay KitThermo Scientific23225For measuring protein concentration
Odyssey EMSA Buffer KitLicor829-07910Contains all necessary EMSA buffers
TBE Gels, 6%, 12 WellsInvitrogenEC6265BOXFor EMSA
TBE Buffer (10X)Thermo ScientificB52For EMSA
FactorFinder Starting KitMiltenyi Biotec130-092-318Contains all necessary DAPA buffers
Licor Odyssey CLxLicorRecommended scanner for DAPA/EMSA
Antibiotic-AntimycoticGibco15240-062Contains 10,000 units/mL of penicillin, 10,000 µg/mL of streptomycin, and 25 µg/mL of Fungizone® Antimycotic
Fetal Bovine SerumGibco26140-079FBS, for culture media
RPMI 1640 MediumGibco22400-071Contains L-glutamine and 25mM HEPES

References

  1. Hindorff, L. A., et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 106 (23), 9362-9367 (2009).
  2. Maurano, M. T., et al.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Functional Non coding Genetic VariantsElectrophoretic Mobility Shift Assay EMSADNA affinity Precipitation Assay DAPARegulatory ProteinsPathwaysB lymphoblastoid CellsNuclear LysatesCE BufferNE bufferDithiothreitol DTTPhosphatase InhibitorPhenylmethanesulfonyl Fluoride PMSFNonidet P 40

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved