JoVE Logo
Faculty Resource Center

Sign In





Representative Results





Immunology and Infection

Assay of Adhesion Under Shear Stress for the Study of T Lymphocyte-Adhesion Molecule Interactions

Published: June 29th, 2016



1Department of Medicine, New York University School of Medicine, 2Department of Pathology, New York University School of Medicine

This flow adhesion assay provides a simple, high impact model of T cell-epithelial cell interactions. A syringe pump is used to generate shear stress, and confocal microscopy captures images for quantification. The goal of these studies is to effectively quantify T cell adhesion using flow conditions.

Overall, T cell adhesion is a critical component of function, contributing to the distinct processes of cellular recruitment to sites of inflammation and interaction with antigen presenting cells (APC) in the formation of immunological synapses. These two contexts of T cell adhesion differ in that T cell-APC interactions can be considered static, while T cell-blood vessel interactions are challenged by the shear stress generated by circulation itself. T cell-APC interactions are classified as static in that the two cellular partners are static relative to each other. Usually, this interaction occurs within the lymph nodes. As a T cell interacts with the blood vessel wall, the cells arrest and must resist the generated shear stress.1,2 These differences highlight the need to better understand static adhesion and adhesion under flow conditions as two distinct regulatory processes. The regulation of T cell adhesion can be most succinctly described as controlling the affinity state of integrin molecules expressed on the cell surface, and thereby regulating the interaction of integrins with the adhesion molecule ligands expressed on the surface of the interacting cell. Our current understanding of the regulation of integrin affinity states comes from often simplistic in vitro model systems. The assay of adhesion using flow conditions described here allows for the visualization and accurate quantification of T cell-epithelial cell interactions in real time following a stimulus. An adhesion under flow assay can be applied to studies of adhesion signaling within T cells following treatment with inhibitory or stimulatory substances. Additionally, this assay can be expanded beyond T cell signaling to any adhesive leukocyte population and any integrin-adhesion molecule pair.

T lymphocyte adhesion mediates a number of distinct processes in a healthy immune system,3 playing critical roles in T cell trafficking and antigen presentation. Whether during immune surveillance or an active immune response these two broad roles for adhesion are critical.4 The physiological signaling events of T cell-endothelial cell interactions are distinct from T cell-antigen presenting cell (APC) interactions, and therefore require distinct methods of study to best understand the signaling cascades involved. The firm adhesion of a T cell to a blood vessel wall during lymphocyte extravasation requires rapid and dynamic integrin activation. T....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Plating the CHO-ICAM Cells

Note: The goal of this step is to plate the CHO-ICAM cells in the flow chambers for growth overnight with the goal of generating a confluent monolayer.

  1. Maintain CHO-ICAM cells in 10 cm tissue-culture treated culture dishes in 10 ml RPMI media supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (CHO-ICAM complete culture media) at 37 °C with 5% CO2.
  2. To collect cells, add 1 ml 0.5% trypsin-EDTA and incubate at room temperat.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Representative results are shown from the flow adhesion assay using Jurkat and primary human CD3+ T cells, as indicated, stimulated with SDF-1α. The negative controls in all shown experiments are unstimulated cells. A threshold basal percent adhesion of unstimulated cells is between 5 - 10%; base adhesion notably above this range indicates a problematic experiment and suggests the start population of T cells were nonspecifically pre-activated in preparation. Fold increase .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In order to properly analyze T cell adhesion, the stimulant to be included in the study must be considered when choosing an in vitro method. While there are several assays to study signals leading to LFA-1 activation and ICAM-1 binding all methods are not interchangeable. A static adhesion assay10 is best suited to study T cell-APC interactions; alternatively, the shear stress method detailed here is ideal to model T cell-epithelial cell interactions. In vivo, as chemokines are presented alon.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The Rheumatology Research Foundation and the Hirschil Trust supported this work.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
T cell samples (cell line or primary) ATCC TIB-152 Peripheral human T cells
CHO-ICAM-1 cells ATCC CRL-2093
µ-Slide VI 0.4 ibiTreat ibidi 80606
500 ml glass bottle Fisher FB800500
250 ml glass bottle Fisher FB800250
Silicone tubing 0.8 mm ibidi 10841
Confocal microscope with incubator chamber Ziess 700 Any wide field fluorescent microscope
Syringe pump New Era Pump Systems NE-300
60 ml syringe BD 309653
CFSE eBioscience 65-0850
SDF-1α R&D 350-NS-010/CF
RPMI Lonza 12-702F/12
PBS  Lonza 17-516F
Microcentrifuge Eppendorf  5424
D-Glucose Sigma Aldrich G8270 
PMA Sigma Aldrich 16561-29-8
Volocity software Perkin Elmer Version 6.2.1
ImageJ software NIH Version 1.48V
Tissue-culture treated culture dishes Falcon 353003
Trypsin-EDTA (0.25%) Phenol Red Gibco 25200114
Heat Inactivated FBS Denville FB5001-H
Penicillin/Streptomycin Fisher BP295950

  1. Alon, R., Ley, K. Cells on the run: shear-regulated integrin activation in leukocyte rolling and arrest on endothelial cells. Curr Opin Cell Biol. 20 (5), 525-532 (2008).
  2. Ley, K., Laudanna, C., Cybulsky, M. I., Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 7 (9), 678-689 (2007).
  3. Dustin, M. L., Bivona, T. G., Philips, M. R. Membranes as messengers in T cell adhesion signaling. Nat Immunol. 5 (4), 363-372 (2004).
  4. Mor, A., Dustin, M. L., Philips, M. R. Small GTPases and LFA-1 reciprocally modulate adhesion and signaling. Immunol Rev. 218, 114-125 (2007).
  5. Rose, D. M., Alon, R., Ginsberg, M. H. Integrin modulation and signaling in leukocyte adhesion and migration. Immunol Rev. 218, 126-134 (2007).
  6. Alon, R., Feigelson, S. W. Chemokine-triggered leukocyte arrest: force-regulated bi-directional integrin activation in quantal adhesive contacts. Curr Opin Cell Biol. 24 (5), 670-676 (2012).
  7. Su, W., et al. Rap1 and its effector RIAM are required for lymphocyte trafficking. Blood. 126 (25), 2695-2703 (2015).
  8. Judokusumo, E., Tabdanov, E., Kumari, S., Dustin, M. L., Kam, L. C. Mechanosensing in T lymphocyte activation. Biophys J. 102 (2), L5-L7 (2012).
  9. Zeltzer, E., et al. Diminished adhesion of CD4+ T cells from dialysis patients to extracellular matrix and its components fibronectin and laminin. Nephrol Dial Transplant. 12 (12), 2618-2622 (1997).
  10. Strazza, M., Azoulay-Alfaguter, I., Pedoeem, A., Mor, A. Static adhesion assay for the study of integrin activation in T lymphocytes. J Vis Exp. (88), (2014).
  11. Ibidi GmbH. Shear stress and shear rates for ibidi μ-Slides - based on numerical calculations. Application Note 11. , (2014).
  12. van Gijsel-Bonnello, M., et al. Pantethine Alters Lipid Composition and Cholesterol Content of Membrane Rafts, With Down-Regulation of CXCL12-Induced T Cell Migration. J Cell Physiol. 230 (10), 2415-2425 (2015).
  13. Tozeren, A., et al. Micromanipulation of adhesion of phorbol 12-myristate-13-acetate-stimulated T lymphocytes to planar membranes containing intercellular adhesion molecule-1. Biophys J. 63 (1), 247-258 (1992).
  14. Mortier, A., Van Damme, J., Proost, P. Overview of the mechanisms regulating chemokine activity and availability. Immunol Lett. 145 (1-2), 2-9 (2012).
  15. Rot, A. In situ binding assay for studying chemokine interactions with endothelial cells. J Immunol Methods. 273 (1-2), 63-71 (2003).
  16. Yang, L., et al. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood. 106 (2), 584-592 (2005).
  17. Long, E. O. ICAM-1: getting a grip on leukocyte adhesion. J Immunol. 186 (9), 5021-5023 (2011).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved