A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

A protocol for the synthesis and characterization of diffusive motion of cyclic polymers at the single molecule level is presented.

Abstract

We demonstrate a method for the synthesis of cyclic polymers and a protocol for characterizing their diffusive motion in a melt state at the single molecule level. An electrostatic self-assembly and covalent fixation (ESA-CF) process is used for the synthesis of the cyclic poly(tetrahydrofuran) (poly(THF)). The diffusive motion of individual cyclic polymer chains in a melt state is visualized using single molecule fluorescence imaging by incorporating a fluorophore unit in the cyclic chains. The diffusive motion of the chains is quantitatively characterized by means of a combination of mean-squared displacement (MSD) analysis and a cumulative distribution function (CDF) analysis. The cyclic polymer exhibits multiple-mode diffusion which is distinct from its linear counterpart. The results demonstrate that the diffusional heterogeneity of polymers that is often hidden behind ensemble averaging can be revealed by the efficient synthesis of the cyclic polymers using the ESA-CF process and the quantitative analysis of the diffusive motion at the single molecule level using the MSD and CDF analyses.

Introduction

Cyclic polymers are unique in that they do not have chain ends. They often exhibit unusual behaviors which is distinct from their linear counterpart, including increased thermal stability of polymer micelles by a linear-to-cyclic conversion,1,2 and spatial organization of DNA in bacterial cells by a loop formation.3 Topological interactions between the cyclic chains are believed to be the critical factor for such unusual behaviors.4,5 Therefore, characterizing the motion and relaxation of cyclic polymers under entangled conditions has been an important research topic in polymer science for decades.6

Protocol

1. Synthesis of Monofunctional and Bifunctional Poly(THF)

  1. Monofunctional poly(THF)
    1. Flame dry a 2-neck 100-ml round-bottom flask. Vacuum and fill the flask with nitrogen (3 cycles).
    2. Add distilled tetrahydrofuran (THF) (50 ml) to the flask. Put the flask in a water bath at 20 °C and equilibrate the temperature.
    3. Add methyl triflate (0.5 mmol) to the flask by a syringe. Stir the mixture for 5-10 min at 20 °C.
    4. Add N-phenyl pyrrolidine (4-6 equiv.) to the flask by a syringe. Stir the mixture for 30-60 min.
    5. Completely remove the solvent under reduced pressure (ca.....

Results

The perylene diimide-incorporated 4-armed star and 8-shaped dicyclic poly(THF)s were synthesized using the electrostatic self-assembly and covalent fixation (ESA-CF) process (Figure 1, Figure 2). Time-lapse single-molecule fluorescence images were measured for the 4-armed (Figure 3a) and 8-shaped (Figure 3b) polymers. The time-lapse fluorescence images (Figure 3) show spatially isolated bright and sharp s.......

Discussion

The 4-armed and 8-shaped polymers were prepared via the ESA-CF protocol (Figure 1), which is a critical step for the synthesis.12,24 Monofunctional and bifunctional linear poly(THF)s with N-phenylpiperidinium end groups were synthesized according to the previous procedure.11 The ion exchange was carried out by reprecipitation of an acetone solution of a polymer precursor with triflate counteranions into an aqueous solution containing an excess amount of carboxylate.

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research No. 22750122 (S.H.), No. 26288099 (T.Y.), and No. 23350050 (Y.T.) of the Japan Society for the Promotion of Science. S.H. is grateful for The Kurata Memorial Hitachi Science and Technology Foundation. The research reported in this publication was supported by the King Abdullah University of Science and Technology (S.H.).

....

Materials

NameCompanyCatalog NumberComments
Materials
THFGodo
Wakosil C-300Wako Pure Chemical Industries
AcetoneGodo
TolueneGodo
n-HexaneGodo
CHCl3Kanto Chemical
Bio-Beads S-X1Bio-Rad
Methyl triflateNacalai Tesque
Triflic anhydrideNacalai Tesque
Potassium HydroxideWako Pure Chemical Industries
EthanolWako Pure Chemical Industries
Poly(tetrahydrofuran)Aldrich
ChloroformWako Pure Chemical Industries
Immersion oilCargilleType 37 / Type A
Equipment
2-Neck 100-mL round-bottom flask
Flask
Beaker
Funnel
Filter paperWhatman
Reflux condenser
Syringe
Water bath
Magnetic stirrer
Rotary evaporator
Microscope cover slips (24 x 24 mm, No. 1)Matsunami GlassCO22241
Staining jarAS ONE Corporation1-7934-01
Ultrasonic cleanerVWR International 142-0047
Inverted microscopeOlympusIX71
Ar-Kr ion laserCoherentInnova 70C
Berek compensatorNewport5540
Excitation filterSemrockLL01-488-12.5
Dichloric mirrorOmega optical500DRLP
Emission filterSemrockBLP01-488R-25
Lens and mirrorThorlabs
EM-CCD cameraAndor TechnologyiXon
Objective lens (x100, N.A. = 1.3)OlympusUPLFLN 100XOP
Objective heaterBioptechs
Preparative GPCJapan Analytical IndustryLC-908

References

  1. Honda, S., Yamamoto, T., Tezuka, Y. Topology-Directed Control on Thermal Stability: Micelles Formed from Linear and Cyclized Amphiphilic Block Copolymers. J. Am. Chem. Soc. 132 (30), 10251-10253 (2010).
  2. Honda, S., Yamamoto, T., Tezuka, Y.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Cyclic PolymersDiffusive MotionSingle MoleculePolymer PhysicsTopological PolymersPerylene DiimidePoly THFTolueneN hexaneAcetoneSilica GelLinear Poly THFChloroformMicroscopyObjective Heater

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved