A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Chemistry
Free-solution capillary electrophoresis (CE) separates analytes, generally charged compounds in solution through the application of an electric field. Compared to other analytical separation techniques, such as chromatography, CE is cheap, robust and effectively requires no sample preparation (for a number of complex natural matrices or polymeric samples). CE is fast and can be used to follow the evolution of mixtures in real time (e.g., chemical reaction kinetics), as the signals observed for the separated compounds are directly proportional to their quantity in solution.
Here, the efficiency of CE is demonstrated for monitoring the covalent grafting of peptides onto chitosan films for subsequent biomedical applications. Chitosan's antimicrobial and biocompatible properties make it an attractive material for biomedical applications such as cell growth substrates. Covalently grafting the peptide RGDS (arginine - glycine - aspartic acid - serine) onto the surface of chitosan films aims at improving cell attachment. Historically, chromatography and amino acid analysis have been used to provide a direct measurement of the amount of grafted peptide. However, the fast separation and absence of sample preparation provided by CE enables equally accurate yet real-time monitoring of the peptide grafting process. CE is able to separate and quantify the different components of the reaction mixture: the (non-grafted) peptide and the chemical coupling agents. In this way the use of CE results in improved films for downstream applications.
The chitosan films were characterized through solid-state NMR (nuclear magnetic resonance) spectroscopy. This technique is more time-consuming and cannot be applied in real time, but yields a direct measurement of the peptide and thus validates the CE technique.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved