Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Method Article
Nous décrivons une méthode étape par étape de réalisation coiffage pulpaire direct sur les souris des dents pour l'évaluation de la cicatrisation pulpaire et la formation de dentine réparatrices in vivo.
Dental pulp is a vital organ of a tooth fully protected by enamel and dentin. When the pulp is exposed due to cariogenic or iatrogenic injuries, it is often capped with biocompatible materials in order to expedite pulpal wound healing. The ultimate goal is to regenerate reparative dentin, a physical barrier that functions as a "biological seal" and protects the underlying pulp tissue. Although this direct pulp-capping procedure has long been used in dentistry, the underlying molecular mechanism of pulpal wound healing and reparative dentin formation is still poorly understood. To induce reparative dentin, pulp capping has been performed experimentally in large animals, but less so in mice, presumably due to their small sizes and the ensuing technical difficulties. Here, we present a detailed, step-by-step method of performing a pulp-capping procedure in mice, including the preparation of a Class-I-like cavity, the placement of pulp-capping materials, and the restoration procedure using dental composite. Our pulp-capping mouse model will be instrumental in investigating the fundamental molecular mechanisms of pulpal wound healing in the context of reparative dentin in vivo by enabling the use of transgenic or knockout mice that are widely available in the research community.
Dental caries are one of the most prevalent oral diseases and the leading cause of surgical interventions to dentitions in almost all individuals1,2. The prognosis of surgical interventions and restorations of a tooth largely depends upon proper pulpal response and successful wound healing. Indeed, dental caries that penetrate deeply through the enamel and dentin frequently lead to the exposure of the underlying pulp tissue that is often "capped" with dental materials, such as calcium hydroxide (Ca(OH)2) or hydraulic calcium-silicate cements (HCSCs), including mineral trioxide aggregates (MTA). The ultimate goal of such a pulp-capping procedure is to expedite pulpal wound healing by regenerating reparative dentin, a physical barrier that functions as a "biological seal" to protect the underlying pulp tissue and to increase the life expectancy of the tooth and the overall oral health. However, the underlying mechanism of pulpal wound healing and reparative dentin formation is not fully understood.
To better understand the mechanisms of pulpal wound healing and reparative dentin formation in vivo, several animals were previously used, including monkeys, dogs, and pigs3-5. Among them, rats are frequently used because they are relatively smaller in sizes compared to the other animals, but their teeth are large enough to perform direct pulp capping without any technical difficulties6-10. These animal models are ideal alternatives to human studies for examining pulpal responses and reparative dentin formation. However, their utilization is limited to observational studies at the cellular level, and they scarcely provide mechanistic insights during reparative dentin formation at the molecular level.
Recent technical advances in genetic engineering provided invaluable and indispensable research tools-mice that harbor a gene that is either overexpressed or deleted-that are instrumental to studying molecular mechanisms of human diseases in vivo. The numbers of different strains of transgenic or knockout mice that are strategically inducible in a cell-specific manner are continually growing in the scientific community. Therefore, examining pulpal wound healing and reparative dentin regeneration in these mice would greatly help to expedite our understanding of these processes at the molecular level. However, the use of mice is significantly dampened, as performing a pulp-capping procedure on a mouse tooth is technically challenging due to its miniature size. Here, we present our reproducible method of performing direct pulp capping in mice for the evaluation of pulpal wound healing and reparative dentin formation in vivo.
Les souris ont été achetées auprès de Jackson Laboratory et conservés dans un vivarium exempt d'agents pathogènes dans la Division UCLA de médecine de laboratoire animale (DLAM). Les expériences ont été effectuées selon les directives institutionnelles approuvées du Comité de la recherche animale du chancelier (ARC N ° 2016-037).
1. Souris Anesthésie
2. Procédure de coiffage pulpaire
3. Post-op Soins
4. Tissue Procurement
5. μCT Numérisation
6. Traitement des tissus et Coloration
Ici, nous avons montré les procédures étape par étape pour effectuer le coiffage pulpaire sur souris des dents. L'un des aspects clés de coiffage pulpaire chez la souris est d'avoir l'appareil approprié. A cet égard, comportant le microscope avec un grossissement de 10X puissance est essentielle (figure 1A). Pour créer une préparation de classe I comme dans la dent, nous avons utilisé une fraise ¼ tour dans une pièce à main haute vitesse électri...
À l' heure actuelle, il existe plusieurs modèles expérimentaux disponibles pour valider les effets in vivo des matériaux dentaires, échafauds, ou des facteurs de croissance sur la différenciation odontogène des cellules souches de la pulpe dentaire (DPSC) 13. Ces modèles comprennent une transplantation autologue de ectopique DPSC dans un organe tel que la capsule rénale, ou d'une transplantation sous - cutanée dans des souris immunodéprimées DPSC avec échafauds 14,15. ...
The authors have nothing to disclose.
Cette étude a été soutenue par R01DE023348 (RHK) à partir de NIDCR / NIH et la Subvention Faculté de recherche (RHK) du Conseil de la recherche du Sénat académique de la Division de Los Angeles de l'Université de Californie.
Name | Company | Catalog Number | Comments |
BM-LED stereo microscope | MEIJI Techno | Microscope | |
Optima MCX-LED | Bien Air Dental | 1700588-001 | Electic motor engine |
isoflurane | Henry schein animal health | NDC 11695-0500-2 | |
1/4 round bur | Brasseler | 001092T0 | |
Endodontic K-file | Roydent | 98947 | |
ProRoot MTA | Dentsply | PROROOT5W | MTA |
Paper point | Henry schein | 100-3941 | |
Ultra-Etch | Ultradent product Inc. | Phosphoric acid etchant | |
OptiBond SoloPlus | Kerr | 29669 | Adhesives |
Coltolux LED | Coltene/whaledent Inc. | C7970100115 | Curing light unit |
Characterization tint | Bisco | T-14012 | Flowable composite |
Skyscan | Breuker | 1275 | uCT scanner |
Microm | Thermo | HM355S | Microtome |
Hematoxyline-1 | Thermo Scientific | 7221 | |
Eosin-Y | Thermo Scientific | 7111 | |
Cytoseal 60 | Thermo Scientific | 8310-16 | Mounting solution |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon