A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we present a combinatorial approach for classifying neuronal cell types prior to isolation and for the subsequent characterization of single-cell transcriptomes. This protocol optimizes the preparation of samples for successful RNA Sequencing (RNA-Seq) and describes a methodology designed specifically for the enhanced understanding of cellular diversity.
The discovery of cell type-specific markers can provide insight into cellular function and the origins of cellular heterogeneity. With a recent push for the improved understanding of neuronal diversity, it is important to identify genes whose expression defines various subpopulations of cells. The retina serves as an excellent model for the study of central nervous system diversity, as it is composed of multiple major cell types. The study of each major class of cells has yielded genetic markers that facilitate the identification of these populations. However, multiple subtypes of cells exist within each of these major retinal cell classes, and few of these subtypes have known genetic markers, although many have been characterized by morphology or function. A knowledge of genetic markers for individual retinal subtypes would allow for the study and mapping of brain targets related to specific visual functions and may also lend insight into the gene networks that maintain cellular diversity. Current avenues used to identify the genetic markers of subtypes possess drawbacks, such as the classification of cell types following sequencing. This presents a challenge for data analysis and requires rigorous validation methods to ensure that clusters contain cells of the same function. We propose a technique for identifying the morphology and functionality of a cell prior to isolation and sequencing, which will allow for the easier identification of subtype-specific markers. This technique may be extended to non-neuronal cell types, as well as to rare populations of cells with minor variations. This protocol yields excellent-quality data, as many of the libraries have provided read depths greater than 20 million reads for single cells. This methodology overcomes many of the hurdles presented by Single-cell RNA-Seq and may be suitable for researchers aiming to profile cell types in a straightforward and highly efficient manner.
Neuronal diversity is observed throughout the central nervous system, particularly in the vertebrate retina, a highly specialized tissue consisting of 1 glial and 6 neuronal cell types that arise from one population of retinal progenitor cells1,2,3. Many subtypes of cells can be classified functionally, morphologically, and genetically. The goal of this protocol is to tie the genetic variability of cell types to their identifiable functional and/or morphological characteristics. A number of genes have been identified for the classification of cells, but many subtypes continue....
All procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at Northwestern University.
1. Preparation of Solutions for Electrophysiology (4 h)
Cell types are easily classified following the dye injection
Figure 1 shows an example of a GFP+ RGC before and after fluorescent tracer filling. This cell was identified based on its expression of GFP in the transgenic line (Figure 1A). A tight seal was formed with a fine-tip, pulled-glass electrode onto the soma of this cell. In order to characterize the subtype, the fluorescent dye was injected .......
Our protocol demonstrates, through a quick and easy-to-use guide, a method to prepare single cells of identified morphological classes for high-quality sequencing, with little injury to the sample. In the present manuscript, intrinsically photosensitive retinal ganglion cells are morphologically characterized, isolated, and prepared for RNA-Seq. Cellular stresses may occur during retinal handling; for this reason, we replace each piece of tissue after no more than 4 h of use. We can assess the state of the cells by using.......
We would like to acknowledge Jennifer Bair and Einat Snir, as well as the University of Iowa Institute for Human Genetics, for their assistance in preparing and handling samples.
....Name | Company | Catalog Number | Comments |
Ames' Medium | Sigma Aldrich | A1420-10X1L | |
Sodium Bicarbonate | Sigma Aldrich | S8875 | |
K-gluconate | Spectrum Chemical | PO178 | |
EGTA | Sigma Aldrich | E4378 | |
HEPES | Sigma Aldrich | H3375 | |
Diethyl pyrocarbonate (DEPC) | Sigma Aldrich | D5758 | |
Alexa Fluor 594 Hydrazide | Invitrogen | A10442 | |
Collagenase | Worthington Biochemical | LS005273 | |
Hyaluronidase | Worthington Biochemical | LS002592 | |
Petri dish (35mm diameter) | Thermo Fisher Scientific | 153066 | |
Ophthalmologic scissors | Fine Science Tools | 15000-00 | |
#5 Forceps | Fine Science Tools | 11252-30 | |
Microplate Shaker | Fisher Scientific | 13-687-708 | |
Glass Micropipette | Sutter | BF120-69-10 | |
Micropipette Puller | Sutter | P-1000 horizontal pipette puller | |
1mL syringe | Fisher Scientific | 14-823-2F | |
Flexible tubing | Fisher Scientific | 14-171 | |
TCL lysis buffer | Qiagen | 1031576 | Lysis Buffer 1 |
β-mercaptoethanol | Sigma Aldrich | M3148 | |
RNase-Free Water | Qiagen | 129112 | |
0.2 ml PCR tubes | Eppendorf | 30124359 | |
Ethyl Alcohol, Pure | Sigma Aldrich | E7023 | Ethanol |
Analog Vortex Mixer | Thermo Fisher Scientific | 02215365 | Vortex |
Mini Centrifuge | Thermo Fisher Scientific | 05-090-100 | |
Agencourt RNAClean XP Beads | Beckman Coulter | A63987 | RNA magnetic beads |
MagnaBlot II Magnetic Separator | Promega | V8351 | Magnetic stand |
1.5 ml MCT Graduated Tubes | Thermo Fisher Scientific | 05-408-129 | |
Smart-Seq v4 Ultra Low Input RNA Kit | Clontech | 634888 | Reagents for Reverse Transcription and PCR Amplification |
10X Lysis Buffer | Lysis Buffer 2 | ||
5X Ultra Low First-Strand Buffer | Buffer 1 | ||
3' SMART-Seq CDS Primer II A | Primer II | ||
SMART-Seq v4 Oligonucleotide | Oligonucleotide | ||
SMARTScribe Rverse Transcriptase | Reverse Transcriptase | ||
2X SeqAmp PCR Buffer | PCR Buffer | ||
PCR Primer II A | PCR Primer | ||
SeqAmp DNA Polymerase | DNA Polymerase | ||
Mastercycler pro S | Eppendorf | 950030020 | Thermocycler |
Agencourt AMPure XP Beads | Beckman Coulter | A63881 | DNA magnetic beads |
2100 Bioanalyzer | Agilent Technologies | G2939AA | |
HS Bioanalyzer Chips & Reagents | Agilent Technologies | 5067-4626 | |
Qubit HS Assay Kit | Thermo Fisher Scientific | Q32851 | For the calculation of sample concentrations |
Qubit Assay Tubes | Thermo Fisher Scientific | Q32856 | |
Qubit 2.0 Fluorometer | Thermo Fisher Scientific | Q32866 | |
Nextera XT DNA Sample Preparation Kit | Illumina | FC-131-1024 | Reagents for Tagmentation and Index Coupling |
TD Buffer | Buffer 2 | ||
ATM | Tagmentation Mix | ||
NT Buffer | Tagmentation Neutralizing Buffer | ||
NPM | PCR Master Mix | ||
Nextera XT Index Kit | Illumina | FC-131-1001 | Indices for Tagmentation |
N501 | White 1 | ||
N502 | White 2 | ||
N701 | Orange 1 | ||
N702 | Orange 2 | ||
HiSeq 2500 | Illumina | SY-401-2501 | For completing sequencing of samples |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved