A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
A procedure for making en face preparations of the mouse carotid artery and aorta is described. Such preparations, when immunofluorescently stained with specific antibodies, enable us to study localization of proteins and identification of cell types within the entire vascular wall by confocal microscopy.
Sections of paraffin embedded tissues are routinely used for studying tissue histology and histopathology. However, it is difficult to determine what the three-dimensional tissue morphology is from such sections. In addition, the sections of tissues examined may not contain the region within the tissue that is necessary for the purpose of the ongoing study. This latter limitation hinders histopathological studies of blood vessels since vascular lesions develop in a focalized manner. This requires a method that enables us to survey a wide area of the blood vessel wall, from its surface to deeper regions. A whole mount en face preparation of blood vessels fulfills this requirement. In this article, we will demonstrate how to make en face preparations of the mouse aorta and carotid artery and to immunofluorescently stain them for confocal microscopy and other types of fluorescence-based imaging.
For histopathological studies by light microscopy, three dimensional pieces of biological tissues are routinely processed for paraffin embedment followed by sectioning and staining. A tissue sample that has been paraffin-embedded may be several millimeters in all three dimensions. However, for the purpose of light microscopy, it must be first sectioned so that light can pass through and then stained so that the thin section yields enough contrast for imaging. Because sectioned specimens are usually 5-10 µm in thickness, one sees only a very small fraction of the whole specimen in two dimensions at a time. It is possible to collect sequential sections and, after imaging each section individually, perform computer-assisted reconstruction of the 3D images, but this is a tedious job indeed. Histopathology of blood vessels, especially for studying the pathogenesis of atherosclerosis, presents unique problems. Atherosclerosis is a focalized disease that develops locally in areas where disturbed blood flow occurs. Furthermore, the disease is initiated within the intima, a thin tissue consisting of a monolayer of endothelial cells and extracellular matrix, of large arteries. For these reasons, it is a challenge to locate and study early lesions using sectioned blood vessels because one can easily miss sectioning the lesion. Even if a section does include a diseased area, one will see only a 5-10 µm portion containing endothelial cells and other vascular wall cells in the media and adventitia.
Whole mount en face (pronounced än ˈfäs) preparations allow us to survey a wide area of the blood vessel surface such as the entire aorta from the aortic root all the way down to the common iliac arteries. Using such a specimen stained with specific antibodies and other specific probes, one can pinpoint the location of lesions and also where various molecular events occur in endothelial cells in conjunction with atherogenesis such as changes in the expression, localization, and posttranslational modifications of proteins. In addition to studying atherogenesis, the endothelial cell shape observed in en face preparations is used as an indicator of the regional time-averaged blood flow pattern. Such data are important for studying mechanosignaling of endothelial cells in situ. For this purpose, routine histological cross-sectioned blood vessels are not useful. Thus, for vascular medicine and biology, it is especially important to acquire a technique for making en face preparations of blood vessels that allows one to observe a wide area of the vessel surface as well as the deeper subsurface areas of the vessel.
As reviewed by Jelev and Surchev1, vascular biologists have developed various methods to observe the lining of blood vessels en face. Some ingenious methods were developed in the 1940's and 1950's. Using these methods, they were able to study the fundamental organization of endothelial cells that line the inner surface of blood vessels. However, because of the way these en face preparations are prepared (the so-called Hautchen method2,3,4 or peeling off of the vessel surface5) and the way the specimen was stained, it was not always possible to obtain uninterrupted morphological information from the vessel surface into the deeper areas of the blood vessel wall. Whole mount en face vessel preparation combined with immunofluorescence staining allowed us to not only study endothelial cell morphology and protein expression and localization in these cells, but also to extend such studies to the subendothelial region of the vessel wall. Early studies using blood vessel en face preparations stained immunoflurescently began to appear in the 1980's6,7. With the advent of laser scanning confocal microscopy and more recently multiphoton microscopy, one can now obtain clear in-focus images of the blood vessel wall structure in immunofluorescently stained en face vessel samples as well as the vascular network in live animals8,9,10,11. These computer-based imaging techniques create in-focus optical sectioned images, and by stacking up such images, one can obtain reconstructed 3D images of the vessel wall and the vascular network in tissues. In addition, one can generate images of a section made along the Z-axis of the reconstructed image12,13.
In this article, we will illustrate a method for preparing en face preparations of the mouse aorta and the carotid artery for immunofluorescent staining. En face preparations can be made even after these vessels have been experimentally manipulated. For example, a carotid artery may be partially ligated and then an en face preparation made after such a surgery. For this reason, we will also describe in this article how we do a partial ligation on the carotid artery. Compared with making similar preparations from larger animals such as rats, rabbits, and humans, mouse vessels are small in size and more fragile, thus requiring added care for handling during surgical isolation of vessels and preparing them for antibody staining and microscopy. Because the most commonly used animal model for genetic modification is the mouse, it becomes critical for many investigators to handle mouse vessels without damaging them. In this manuscript, we will describe how to handle mouse blood vessels when making en face preparations of the mouse aorta and carotid artery. For the purpose of demonstration, we will use wild type C57/b6 mice.
The protocols for the mouse partial carotid artery ligation and isolation of the mouse aorta and carotid artery for en face immunostaining are approved by the Institutional Animal Care and Use Committee (IBT 2014-9231).
1. Left Partial Carotid Artery Ligation
2. En Face Immunostaining
A typical en face immunofluorescence image of the endothelium is shown in Figure 3. This image shows a single optical section of a mouse aorta taken near the opening of an intercostal artery (the large dark egg-shaped area). The aorta was double-stained with anti-VE-cadherin (green) and anti-VCAM-1 (vascular cell adhesion molecule-1) (red). Each endothelial cell is outlined with a green linear staining at the adherens junction. Due to minor unevenness of the specimen, som...
When handling mouse blood vessels, it is important to remember that the endothelium is fragile and that any excessive mechanical force will damage endothelial cells. For example, endothelial cells break or detach from the vessel wall if the vessel is perfused too forcefully, which can easily happen when the vasculature is perfused using a hand-operated syringe.
To obtain constant perfusion pressure, we use a gravity perfusion system with a 120 cm water column pressure. It has been reported tha...
None
The research activities of the authors are supported by grants from the National Institute of Health to Dr. Abe (HL-130193, HL-123346, HL-118462, HL-108551).
Name | Company | Catalog Number | Comments |
0.9% Sodium Chloride injection solution USP 500ml bag | Fisher Scientific | NC9788429 | |
12-well plates | Fisher Scientific | 12556005 | |
6-0 coated vicryl suture | Ethicon | J833G | |
AF488 goat anti-rat IgG | Life Technologies | A11006 | |
AF546 goat anti-rabbit IgG | Life Technologies | A11035 | |
Anti-CD144 (Ve-Cad) | BD Biosciences | BD555289 | |
Anti-VCAM-1 (H-276) Rabbit polyclonal IgG | Santa Cruze Biotechnology | Sc-8304 | |
Aoto Flow System | Braintree Scientific | EZ-AF9000 | |
Autoclave Wrap. 24x24in | Cardinal Health | 4024 | |
Blunt retractors, 2.5mm wide | Fine Science Tools | 18200-10 | |
Caprofen (Rimadyl) | zoetis | NADA#141-199 | |
Chlorhexidine Scrub, 2% | Med-Vet International | RXCHLOR2-PC | |
Curity gauze sponges 2x2 | Cardinal Health | KC2146 | |
Electric heating pad, 12X14 | Fisher Scientific | NC0667724 | |
Extra Fine Graefe Forceps | Fine Science Tools | 11152-10 | |
Iris Scissors | Fine Science Tools | 14090-11 | |
Micro cover glass 22x50mm | VWR | 48393059 | |
Microscope Slides | Fisher Scientific | 12-550-18 | |
normal goat serum | Equitech-Bio | GS05 | |
Paraformaldehyde Solution 4% in PBS | Santa Cruze Biotechnology | SC-281692 | |
Petri Dishes 100x15mm | Fisher Scientific | FB0875713 | |
Prolong Gold Antifade mountant with DAPI | Life Technologies | P-36935 | |
Puritan cortton swabs | VWR | 10806-005 | |
Puritan Mini cotton tipped aplicators | VWR | 82004-050 | |
Round handled Needle Holder | Fine Science Tools | 12076-12 | |
Silk Suture 6/0 | Fine Science Tools | 18020-60 | |
Spring scissors | ROBOZ | RS-5601 | |
Strabismus Scissors | Fine Science Tools | 14075-09 | |
Super Grip Forceps | Fine Science Tools | 00649-11 | |
Transparent Dressing | Cardinal Health | TD-26C | |
Triton X-1000 | Fisher Scientific | AC327371000 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved