A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Abnormal sensory function underlies visceral pain and other symptoms of functional and inflammatory bowel diseases. A protocol for the electrophysiological recording of the colonic afferent nerves in an ex vivo rat colorectum preparation is presented here.
Dysfunction of the colonic sensory nerves has been implicated in the pathophysiology of several common conditions, including functional and inflammatory bowel diseases and diabetes. Here, we describe a protocol for the in vitro characterization of the electrophysiological properties of colonic afferents in rats. The colorectum, with the intact pelvic ganglion (PG) attached, is removed from the rat; superfused with carbogenated Krebs solution in the recording chamber; and cannulated at the oral and anal ends to allow for distension. A fine nerve bundle emanating from the PG is identified, and the multiunit afferent nerve activity is recorded using a suction electrode. Distension of the colonic segment elicits gradual increases in multiunit discharge. A principal component analysis is conducted to differentiate the low-threshold, the high-threshold, and the wide-dynamic range afferent fibers. Chemical sensitivity of colonic afferents can be studied through the bath or intraluminal administration of test compounds. This protocol can be modified for application to other species, such as mice and guinea pigs, and to study the differences in the electrophysiological properties of thoracolumbar/hypogastric and lumbosacral/pelvic afferents of the descending colon in normal and pathological conditions.
The gastrointestinal tract (GIT) is richly innervated with extrinsic afferent nerves that convey sensory signals from the gut to the central nervous system and that contribute to the gut-brain interaction. Altered excitability of these extrinsic afferents, as well as altered central processing of the afferent inputs, underlies visceral pain and other symptoms of GI conditions, including functional and inflammatory bowel diseases1. Sensory information from the colorectum is conveyed primarily through the thoracolumbar/hypogastric and the lumbosacral/pelvic nerves (PN)2. There has been an increased interest in studying the electrophysiological properties of these primary afferent fibers in rodent disease models. However, in vivo electrophysiological recordings of the colonic afferents in rodents is a technical challenge and requires considerable surgical skills. In addition, hemodynamic changes, tissue movement, and anesthetics may also impact nerve activity and sensitivity to test stimuli in vivo. Therefore, in recent years, an increasing number of studies have employed in vitro (ex vivo) preparations of different species, including mice, rats, guinea pigs, and humans, to examine the mechanisms of sensory transduction in colonic afferents and the altered excitability in disease conditions.3,4,5,6,7,8
Two types of ex vivo colonic preparation have primarily been reported: the "flat-sheet" preparation5,9,10 and the "tube" preparation3,4. A video protocol for the "flat-sheet" murine colorectum preparation has been previously published11. In this protocol, the mouse colorectum, with the PN) or lumbar splanchnic nerves (LSN) attached, is harvested and superfused in a tissue chamber. The colorectum is cut open longitudinally, and the nerve bundle is extended into a recording compartment filled with paraffin oil. Nerve activity is recorded using a monopolar platinum-iridium electrode. The protocol allows for the identification of the receptive fields of individual afferent fibers by using unbiased electrical stimulation. It localizes the application of chemical stimuli, as well as the application of different mechanical stimulation paradigms (e.g., focal mucosal probing and circumferential stretch), to the afferent nerve endings. Because the nerve must be extended to a separate chamber from the tissue chamber, it is critical to keep the attached nerve relatively long; the successful dissection of the nerves poses a challenge to those new to this methodology. More recently, Nullens et al. published a video protocol for the in vitro recording of the mesenteric afferents in murine jejunal and colonic segments12. In this "tube" preparation, the gut segment with the mesentery attached is kept intact, thus allowing for graded distension and the intra- and extra-luminal administration of different chemicals. Since the mesentery nerve is recorded using a suction electrode, which can be positioned close to the tissue, afferent activity can be recorded even though the mesentery nerve is relatively short. However, the mesentery nerve consists of mixed populations of vagal and spinal afferent fibers that innervate the jejunum or thoracolumbar hypogastric. Lumbosacral pelvic afferents innervate the colorectum, which cannot be discriminated in this protocol. Here, we present a detailed protocol for the electrophysiological recording of rat colonic afferents using the "tube" colorectum preparation with an intact PG. This method may allow for the characterization of the functional properties of lumbar splanchnic (hypogastric) and lumbosacral pelvic afferents.
Access restricted. Please log in or start a trial to view this content.
The experimental protocol reported here has been approved by the Animal Ethical Committee of Shanghai Jiaotong University School of Medicine (# SYXK2013-0050). The dissection of the colorectum with intact ganglion and nerve trunk takes a minimum of 15 minutes for a person quite experienced in this technique. It is therefore necessary to keep the animal alive but under deep anesthesia whilst performing the dissections, to ensure viability of the tissue for subsequent electrophysiological recording.
1. Preparation of Perfusion Solution and Test Compounds
2. Preparation of the Recording Electrode
3. Tissue Collection
4. Dissection of the Colonic Afferent Nerves
5. Preparation of the Suction Electrode
6. Electrophysiological Recording
7. Testing the Colonic Afferent Sensitivity
Access restricted. Please log in or start a trial to view this content.
Figure 1 is the schematic illustration of the experimental setup for the ex vivo "tube" colorectum preparation, with a representative recording from a nerve distal to the PG. The nerve presumably contained a mixture of pelvic and lumbar splanchnic afferents. In preparations from normal rats, the colonic afferent nerves typically have a low level of irregular spontaneous activity. Ramp distension of the colon induces a gradual increase in the ...
Access restricted. Please log in or start a trial to view this content.
The protocol presented here is a relatively straightforward experimental method to assess the electrophysiological properties of the colonic afferents of rats. The protocol (from tissue dissection to setting up the nerve recording) usually takes about 2 h to complete. Tissue collection (step 3) and preparation of the suction electrode (step 5) are the critical steps. It is crucial to be able to locate the PG, the LSN, and the PN and to take care not to damage the ganglion and nerves during tissue dissection. The tip of t...
Access restricted. Please log in or start a trial to view this content.
The authors declare no conflict of interest.
This protocol was supported by research grants from the National Natural Science Foundation of China (#31171066, #81270464) and the Sino-German Science Center (GZ919).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Sodium Pentobarbital | Shanghai Westang Bio-Tech | B558 | |
Capsaicin | Sigma | M2028 | |
Electrode puller | MicroData Instrument Inc | PMP107 | |
Neurolog System (Bioamplifier) | Digitimer, Ltd | Neurolog System | |
A/D converter | Cambridge Electronic Design | Micro1401 | |
Data processing software | Cambridge Electronic Design | Spike2 version 6 | |
Silver wire | World Precision Instruments | EP12 | |
Glass tubes | World Precision Instruments | 1B150-4 | |
Electrode holder | World Precision Instruments | MEH3SBW | |
Heating bath | Grant | GR150 | |
Dissecting microscope | Leica | Zoom2000 | |
Dissecting microscope | World Precision Instruments | PZMIII-BS | |
Cigarette lighter | any | NA | |
Surgical tools | World Precision Instruments | NA | |
Insect pins | home-made from 0.1 mm stainless steel wire | NA | |
Three way manipulator | World Precision Instruments | KITF-R | |
Rats | Any | NA | Any strain/sex can be used. |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved